Skip to main content

Collaborative Targeted Maximum Likelihood Estimation to Assess Causal Effects in Observational Studies

  • Chapter
  • First Online:
Biopharmaceutical Applied Statistics Symposium

Part of the book series: ICSA Book Series in Statistics ((ICSABSS))

Abstract

Observational studies can address a wide variety of issues in medicine and public health. Targeted learning (TL) provides a framework for unbiased estimation of treatment effects using these data. TL relies on two core methodologies, targeted minimum loss-based estimation (TMLE), an efficient double robust estimator, and data adaptive super learning. Collaborative TMLE (C-TMLE) is an extension of TMLE that is particularly effective when there is a sparsity of information in the data. C-TMLE provides an automated approach to constructing parsimonious models for treatment and censoring mechanisms. These models are built in response to residual bias not addressed in an initial outcome regression. C-TMLE can stabilize estimates and reduce mean squared error in high dimensional and other sparse data settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bembom, O., Fessel, J. W., Shafer, R. W., & van der Laan, M. J. (2008). Data-adaptive selection of the adjustment set in variable importance estimation. Technical report, U.C. Berkeley Division of Biostatistics Working Paper 231. http://biostats.bepress.com/ucbbiostat/paper231.

  • Bross, I. D. J. (1954). Misclassification in 2 \(\times \) 2 tables. Biometrics, 10, 478–486.

    Google Scholar 

  • Burns, P. B., Rohrich, R. J., & Chung, K. C. (2011). The levels of evidence and their role in evidence-based medicine. Plastic and Reconstructive Surgery, 128, 305–310.

    Article  Google Scholar 

  • Caliendo, M., & Kopeinig, S. (2008). Some practical guidance for the implementation of propensity score matching. Journal of Economic Surveys, 22(1), 31–72.

    Article  Google Scholar 

  • Cao, W., Tsiatis, A. A., & Davidian, M. (2009). Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data. Biometrika, 96, 723–734.

    Article  MathSciNet  Google Scholar 

  • Davidian, M., & Lunceford, J. K. (2004). Stratification and weighting via the propensity score in estimation of causal treatment effects: A comparative study. Statistics in Medicine, 23, 2937–2960.

    Google Scholar 

  • Freedman, D. A., & Berk, R. A. (2008). Weighting regressions by propensity scores. Evaluation Review, 32, 392–409.

    Article  Google Scholar 

  • Gruber, S., & van der Laan, M. J. (2010a). A targeted maximum likelihood estimator of a causal effect on a bounded continuous outcome. The International Journal of Biostatistics, 6(1).

    Google Scholar 

  • Gruber, S., & van der Laan, M. J. (2010b). An application of collaborative targeted maximum likelihood estimation in causal inference and genomics.The International Journal of Biostatistics, 6(1).

    Google Scholar 

  • Gruber, S., & van der Laan, M. J. (2015). Consistent causal effect estimation under dual misspecification and implications for confounder selection procedures. Statistical Methods in Medical Research, 24(6), 1003–1008.

    Article  MathSciNet  Google Scholar 

  • Hernan, M. A., Brumback, B., & Robins, J. M. (2000). Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology, 11(5), 561–570.

    Article  Google Scholar 

  • Ju, C., Combs, M., Lendle, S. D., Franklin, J. M., Wyss, R., Schneeweiss, S., & van der Laan, M. J. (2016a, June). Propensity score prediction for electronic healthcare databases using super learner and high-dimensional propensity score methods. Technical report, Division of Biostatistics, University of California, Berkeley.

    Google Scholar 

  • Ju, C., Gruber, S., Lendle, S. D., Franklin, J. M., Wyss, R., Schneeweiss, S., & van der Laan, M. J. (2016b). Scalable collaborative targeted learning for large scale and high-dimensional data. Technical report, Division of Biostatistics, University of California, Berkeley.

    Google Scholar 

  • Kang, J., & Schafer, J. (2007a). Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data (with discussion). Statistical Science, 22, 523–539.

    Google Scholar 

  • Kang, J., & Schafer, J. (2007b). Rejoinder: Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data. Statistical Science, 22, 574–580.

    Google Scholar 

  • King, G., Lucas, C., & Nielsen, R. (2014). The balance-sample size frontier in matching methods for causal inference. American Journal of Political Science.

    Google Scholar 

  • Lendle, S. D., Fireman, B., & van der Laan, M. J. (2013). Targeted maximum likelihood estimation in safety analysis. Journal of Clinical Epidemiology, 66(8), S91–S98.

    Google Scholar 

  • Pearl, J. (2011). Invited commentary: Understanding bias amplification. American Journal of Epidemiology, 174(11), 1223–1227.

    Article  Google Scholar 

  • Petersen, M. L., Porter, K. E., Gruber, S., Wang, Y., & van der Laan, M. J. (2010). Diagnosing and responding to violations in the positivity assumption. Statistical Methods in Medical Research, published online 28 Oct. https://doi.org/10.1177/0962280210386207.

  • Petersen, M. L., Schwab, J., Gruber, S., Blaser, N., Schomaker, M., & van der Laan, M. J. (2014). Targeted maximum likelihood estimation for dynamic and static longitudinal marginal structural working models.Journal of Causal Inference, 2(2), 147–185.

    Google Scholar 

  • Porter, K. E., Gruber, S., van der Laan, M. J., & Sekhon, J. S. (2011). The relative performance of targeted maximum likelihood estimators. The International Journal of Biostatistics, 7(31), 1–34.

    Article  MathSciNet  Google Scholar 

  • Robins, J. M. (2000). Robust estimation in sequentially ignorable missing data and causal inference models. In Proceedings of the American Statistical Association: Section on Bayesian Statistical Science, pp. 6–10.

    Google Scholar 

  • Robins, J. M., & Rotnitzky, A. (1992). Recovery of information and adjustment for dependent censoring using surrogate markers. In AIDS Epidemiology: Methodological Issues. Bikhäuser.

    Google Scholar 

  • Robins, J. M., Blevins, D., Ritter, G., & Wulfsohn, M. (1992). G-estimation of the effect of prophylaxis therapy for pneumocystis carinii pneumonia on the survival of aids patients. Epidemiology, 319–336.

    Google Scholar 

  • Robins, J. M., Sued, M., Lei-Gomez, Q., & Rotnitzky, A. (2007). Comment: Performance of double-robust estimators when “inverse probability” weights are highly variable. Statistical Science, 22, 544–559.

    Google Scholar 

  • Robins, J. M. (1999). Commentary on using inverse weighting and predictive inference to estimate the effecs of time-varying treatments on the discrete-time hazard. Statistics in Medicine, 21, 1663–1680.

    Article  Google Scholar 

  • Robins, J. M., & Rotnitzky, A. (1995). Semiparametric efficiency in multivariate regression models with missing data. Journal of the American Statistical Association, 90(429), 122–129.

    Article  MathSciNet  Google Scholar 

  • Robins, J. M., & Rotnitzky, A. (2001). Comment on the Bickel and Kwon article, ‘Inference for semiparametric models: Some questions and an answer’. Statistica Sinica, 11(4), 920–936.

    Google Scholar 

  • Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70, 41–55.

    Article  MathSciNet  Google Scholar 

  • Rotnitzky, A., Robins, J. M., & Zhao, L. P. (1994). Estimation of regression coefficients when some regressors are not always observed. The Journal of the American Statistical Association, 89, 846–866.

    Google Scholar 

  • Rubin, D. B., & van der Laan, M. J. (2008). Empirical efficiency maximization: Improved locally efficient covariate adjustment in randomized experiments and survival analysis. The International Journal of Biostatistics, 4(1), Article 5.

    Google Scholar 

  • Scharfstein, D. O., Rotnitzky, A., & Robins, J. M. (1999). Adjusting for non-ignorable drop-out using semiparametric nonresponse models, (with discussion and rejoinder). Journal of the American Statistical Association, 94(448), 1096–1120 (1121–1146).

    Google Scholar 

  • Schnitzer, M. E., van der Laan, M. J., Moodie, E. E. M., & Platt, R. W. (2014, 06). Effect of breastfeeding on gastrointestinal infection in infants: A targeted maximum likelihood approach for clustered longitudinal data. Annals Applied Statistics, 8(2), 703–725. https://doi.org/10.1214/14-AOAS727.

  • Sekhon, J. S. (2008). Multivariate and propensity score matching software with automated balance optimization: The matching package for R. Journal of Statistical Sotware (Forthcoming).

    Google Scholar 

  • Sekhon, J. S., Gruber, S., Porter, K., & van der Laan, M. J. (2011). Propensity-score-based estimators and C-TMLE. In van der Laan, M. J. & Rose, S. Targeted learning: Prediction and causal inference for observational and experimental data, chap. 21. New York: Springer.

    Google Scholar 

  • Singh, S., & Loke, Y. K. (2012). Drug safety assessment in clinical trials: Methodological challenges and opportunities. Trials, 13.

    Google Scholar 

  • Smith, J., & Todd, P. (2005). Does matching overcome lalondes critique of nonexperimental estimators? Journal of Econometrics, 125, 305–353.

    Article  MathSciNet  Google Scholar 

  • Stitelman, O. M., & van der Laan, M. J. (2010). Collaborative targeted maximum likelihood for time to event data. The International Journal of Biostatistics, 6(1).

    Google Scholar 

  • Tan, Z. (2006). A distributional approach for causal inference using propensity scores. The Journal of the American Statistical Association, 101, 1619–1637.

    Article  MathSciNet  Google Scholar 

  • Tan, Z. (2010). Bounded, efficient and doubly robust estimation with inverse weighting. Biometrika, 97(3), 661–682.

    Article  MathSciNet  Google Scholar 

  • van der Laan, M. J., & Robins, J. M. (2003). Unified methods for censored longitudinal data and causality. New York: Springer.

    Book  Google Scholar 

  • van der Laan, M. J., & Rose, S. (2011). Targeted learning: Prediction and causal inference for observational and experimental data. New York: Springer.

    Book  Google Scholar 

  • van der Laan, M. J., & Gruber, S. (2010, January). Collaborative double robust penalized targeted maximum likelihood estimation. The International Journal of Biostatistics, 6(1).

    Google Scholar 

  • van der Laan, M. J., & Gruber, S. (2012). Targeted minimum loss based estimation of causal effects of multiple time point interventions. The International Journal of Biostatistics, 8.

    Google Scholar 

  • van der Laan, M. J., & Rubin, D. (2006). Targeted maximum likelihood learning. The International Journal of Biostatistics, 2(1).

    Google Scholar 

  • van der Laan, M. J., Polley, E., & Hubbard, A. (2007). Super Learner. Statistical Applications in Genetics and Molecular Biology, 6(25). ISSN 1.

    Google Scholar 

  • Vansteelandt, S., Bekaert, M., & Claeskens, G. (2012). On model selection and model misspecification in causal inference. Statistical Methods in Medical Research, 21, 7–30.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Gruber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gruber, S., van der Laan, M. (2018). Collaborative Targeted Maximum Likelihood Estimation to Assess Causal Effects in Observational Studies. In: Peace, K., Chen, DG., Menon, S. (eds) Biopharmaceutical Applied Statistics Symposium . ICSA Book Series in Statistics. Springer, Singapore. https://doi.org/10.1007/978-981-10-7826-2_1

Download citation

Publish with us

Policies and ethics