Skip to main content

Mediation Modeling in Randomized Trials with Non-normal Outcome Variables

  • Chapter
  • First Online:
Biopharmaceutical Applied Statistics Symposium

Part of the book series: ICSA Book Series in Statistics ((ICSABSS))

  • 669 Accesses

Abstract

Mediation analysis seeks to understand the mechanism by which a treatment affects an outcome. Many conventional and causal mediation approaches have been developed for continuous outcomes. When the outcome of interest is non-continuous (e.g., binary, count, or zero-inflated count), mediation approaches relying on linear models may not be appropriate. This chapter introduces the framework and definition of direct and indirect (mediation) treatment effects on non-continuous outcomes around and through intermediate variables (mediators). Different mediation approaches for non-continuous outcomes are discussed under a variety of settings where post-baseline confounders and unmeasured confounders may be a concern, and under a series of assumptions with and without sequential ignorability. Methods are illustrated with application to a randomized dental caries prevention trial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert, J. M. (2008). Mediation Analysis via potential outcomes models. Statistics in Medicine, 27(8), 1282–1304.

    Article  MathSciNet  Google Scholar 

  • Albert, J. M., & Nelson, S. (2011). Generalized causal mediation analysis. Biometrics, 67(3), 1028–1038.

    Article  MathSciNet  Google Scholar 

  • Albert, J. M. (2012). Mediation analysis for nonlinear models with confounding. Epidemiology, 23, 879–888.

    Google Scholar 

  • Angrist, J. D., Imbens, G. W., & Rubin, D. B. (1996). Identification of causal effects using instrumental variables. Journal of the American Statistical Association, 91(434), 444–455.

    Article  Google Scholar 

  • Avin, C., Shpitser, I., & Pearl, J. (2005). Identifiability of path-specific effects. In Proceedings of the International Joint Conference on Artificial Intelligence (pp. 357–363). Edinburgh, UK: Morgan-Kaufmann.

    Google Scholar 

  • Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173–1182.

    Article  Google Scholar 

  • Cai, B., Small, D., & Ten Have, T. (2011). Two-stage instrumental variable methods for estimating the causal odds ratio: Analysis of bias. Statistics in Medicine, 30(15), 1809–1824.

    Article  MathSciNet  Google Scholar 

  • Cheng, J., Cheng, N. F., Guo, Z., Gregorich, S. E., Ismail, A. I., & Gansky, S. A. (2017). Mediation analysis for count and zero-inflated count data. Statistical Methods in Medical Research. https://doi.org/10.1177/0962280216686131.

  • Cole, D. A., & Maxwell, S. E. (2003). Testing mediation models with longitudinal data: Questions and tips in the use of structural equation modeling. Journal of Abnormal Psychology, 112(4), 558–577.

    Article  Google Scholar 

  • Coxe, S., & MacKinnon, D. (2010). Mediation analysis of Poisson distributed count outcome. Multivariate Behavioral Research, 45(6), 1022.

    Article  Google Scholar 

  • Daniels, M. J., Roy, J., Kim, C., Hogan, J. W., & Perri, M. G. (2012). Bayesian Inference for the Causal Effect of Mediation. Biometrics, 68(4), 1028–1036.

    Article  MathSciNet  Google Scholar 

  • Daniel, R. M., De Stavola, B. L., Cousens, S. N., & Vansteelandt, S. (2015). Causal mediation analysis with multiple mediators. Biometrics, 71(1), 114.

    Article  MathSciNet  Google Scholar 

  • Dobbie, M. J., & Welsh, A. H. (2001). Models for zero-inflated count data using the Neyman type A distribution. Statistical Modeling, 1(11), 65–80.

    Article  Google Scholar 

  • Dunn, G., & Bentall, R. (2007). Modeling treatment effect heterogeneity in randomised controlled trials of complex interventions (psychological treatments). Statistics in Medicine, 26, 4719–4745.

    Google Scholar 

  • Elliott, M. R., Raghunathan, T. E., & Li, Y. (2010). Bayesian inference for causal mediation effects using principal stratification with dichotomous mediators and outcomes. Biostatistics, 11(2), 353–372.

    Article  Google Scholar 

  • Follmann, D., Fay, M. P., & Proschan, M. (2009). Chop-Lump tests for vaccine trials. Biometrics, 65(3), 885–893.

    Article  MathSciNet  Google Scholar 

  • Frangakis, C.E., & Rubin, D.B. (2002). Principal stratification in causal inference. Biometrics, 58, 21–29.

    Google Scholar 

  • Gallop, R., Small, D. S., Lin, J., Elliott, M., Joffe, M., & Ten Have, T. (2009). Mediation analysis with principal stratification. Statistics in Medicine, 28(7), 1108–1130.

    Article  MathSciNet  Google Scholar 

  • Goetgeluk, S., Vansteelandt, S., & Goetghebeur, E. (2008). Estimation of controlled direct effects. Journal of the Royal Statistical Society, Series B, 70(5), 1049–1066.

    Article  MathSciNet  Google Scholar 

  • Guo, Z., Small, D. S., Gansky, S.A., & Cheng, J. (2018). Mediation analysis for count and zero-inflated count data without sequential ignorability and its application in dental studies. Journal of the Royal Statistical Society, Series C, 67, 371–394.

    Google Scholar 

  • Guo, Z., & Small, D. S. (2016). Control function instrumental variable estimation of nonlinear causal effect models. Journal of Machine Learning Research, 17(1), 1–35.

    MathSciNet  MATH  Google Scholar 

  • Hafeman, D. M. (2009). ‘Proportion Explained’: A causal interpretation for standard measures of indirect effect? American Journal of Epidemiology, 170(11), 1443–1448.

    Article  Google Scholar 

  • Holmbeck, G. N. (2002). Post-hoc probing of significant moderational and mediational effects in studies of pediatric populations. Journal of Pediatric Psychology, 27(1), 87–96.

    Article  Google Scholar 

  • Imai, K., Keele, L., & Yamamoto, T. (2010a). Identification, inference and sensitivity analysis for causal mediation effects. Statistical Science, 25(1), 51–71.

    Article  MathSciNet  Google Scholar 

  • Imai, K., Keele, L., & Tingley, D. (2010b). A general approach to causal mediation analysis. Psychological Methods, 15(4), 309–334.

    Article  Google Scholar 

  • Imai, K., & Yamamoto, T. (2013). Identification and sensitivity analysis for multiple causal mechanisms: Revisiting evidence from framing experiments. Political Analysis, 21(2), 141–171.

    Article  Google Scholar 

  • Ismail, A. I., Ondersma, S., Willem Jedele, J. M., Little, R. J., & Lepkowski, J. M. (2011). Evaluation of a brief tailored motivational intervention to prevent early childhood caries. Community Dentistry and Oral Epidemiology, 39(5), 433–448.

    Article  Google Scholar 

  • Jo, B. (2008). Causal inference in randomized experiments with mediational process. Psychological Methods, 13(4), 314–336.

    Article  Google Scholar 

  • Jo, B., Stuart, E. A., MacKinnon, D. P., & Vinokur, A. D. (2011). The use of propensity scores in mediation analysis. Multivariate Behavioral Research, 46(3), 425–452.

    Article  Google Scholar 

  • Joffe, M., & Greene, T. (2009). Related causal frameworks for surrogate outcomes. Biometrics, 65(2), 530–538.

    Article  MathSciNet  Google Scholar 

  • Judd, C. M., & Kenny, D. A. (1981). Process analysis: Estimating medication in treatment evaluations. Evaluation Review, 5(5), 602–619.

    Article  Google Scholar 

  • Kaufman, S., Kaufman, J. S., & MacLehose, R. F. (2009). Analytic bounds on causal risk differences in directed acyclic graphs involving three observed binary variables. Journal of Statistical Planning and Inference, 139(10), 34733487.

    Article  MathSciNet  Google Scholar 

  • King, G., Tomz, M., & Wittenberg, J. (2000). Making the most of statistical analyses: Improving interpretation and presentation. American Journal of Political Science, 44(2), 341–355.

    Article  Google Scholar 

  • Lambert, D. (1992). Zero-inflated poisson regression, with an application to defects in manufacturing. Technometrics, 34(1), 1–14.

    Article  Google Scholar 

  • Lange, T., Vansteelandt, S., & Bekaert, M. (2012). A simple unified approach for estimating natural direct and indirect effects. American Journal of Epidemiology, 176(3), 190–195.

    Article  Google Scholar 

  • Lange, T., Rasmussen, M., & Thygesen, L. C. (2014). Assesing natural direct and indirect effects through multiple pathways. American Journal of Epidemiology, 179(4), 513–518.

    Article  Google Scholar 

  • Loeys, T., Moerkerke, B., De Smet, O., Buysse, A., Steen, J., & Vansteelandt, S. (2013). Flexible mediation analysis in the presence of nonlinear relations: Beyond the mediation formula. Multivariate Behavioral Research, 48, 871–894.

    Article  Google Scholar 

  • Long, J. S. (1997). Regression Models for Categorical and Limited Dependent Variables. Thousand Oaks, CA: Sage Publications.

    MATH  Google Scholar 

  • MacKinnon, D. P., & Dwyer, J. H. (1993). Estimating mediated effects in prevention studies. Evaluation Review, 17, 144–158.

    Article  Google Scholar 

  • MacKinnon, D. P., Warsi, G., & Dwyer, J. H. (1995). A simulation study of effect measures. Multivariate Behavioral Research, 30, 41–62.

    Article  Google Scholar 

  • MacKinnon, D. P. (2000). Contrast in multiple mediator models. In Multivariate applications in substance use research (pp. 141–160). Mahwah, NJ: Lawrence Erlbaum, Associates Publishers.

    Google Scholar 

  • MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. Psychological Methods, 7, 83–104.

    Article  Google Scholar 

  • MacKinnon, D. P. (2008). Introduction to statistical mediation analysis. New York: Erlbaum.

    Google Scholar 

  • MacKinnon, D. P., & Luecen, L. J. (2011). Statistical analysis for identifying mediating variables in public health dentistry interventions. Journal of Public Health Dentistry, 71(Suppl 1), S37–46.

    Article  Google Scholar 

  • Min, Y., & Agresti, A. (2002). Modeling nonnegative data with clumping at zero: a survey. Journal of the Iranian Statistical Society, 1, 7–33.

    MATH  Google Scholar 

  • Nagelkerke, N., Fidler, V., Bernsen, R., & Borgdorff, M. (2000). Estimating treatment effects in randomized clinical trials in the presence of non-compliance. Statistics in Medicine, 19, 1849–1864.

    Article  Google Scholar 

  • Neyman, J. (1923). On the application of probability theory to agricultural experiments. Essay on principles (with discussion). Section 9 (translated). Statistical Science, 5, 465–480.

    Article  Google Scholar 

  • Pearl, J. (2001). Direct and indirect effects. In J. Breese & D. Koller (Eds.), Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  • Pearl, J. (2012). The mediation formula: A guide to the assessment of causal pathways in nonlinear models. In C. Berzuini, P. Dawid, & L. Bernadinelli (Eds.), Causality: Statistical perspectives and applications (pp. 151–175). West Sussex, UK: Wiley.

    Chapter  Google Scholar 

  • Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavioral Research Methods, 40, 879–891.

    Article  Google Scholar 

  • Robins, J. M., & Greenland, S. (1992). Identifiability and exchangeability for direct and indirect effects. Epidemiology, 3, 143–155.

    Article  Google Scholar 

  • Robins, J. M. (2003). Semantics of causal DAG models and the identification of direct and indirect effects. In P. J. Green, N. L. Hjort, & S. Richardson (Eds.), Highly structured stochastic systems. New York, NY: Oxford University Press.

    Google Scholar 

  • Robins, J.M., & Richardson, T.S. (2011). Alternative graphical causal models and the identification of direct effects. In: Shrout P, (Ed.), Causality and psychopathology: Finding the determinants of disorders and their cures. Oxford University Press.

    Google Scholar 

  • Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66, 688–701.

    Article  Google Scholar 

  • Rubin, D. (2004). Direct and indirect causal effects via potential outcomes. Scandinavian Journal of Statistics, 31, 161–170.

    Article  MathSciNet  Google Scholar 

  • Sjlander, A. (2009). Bounds on natural direct effects in the presence of confounded intermediate variables. Statistics in Medicine, 28, 558571.

    MathSciNet  Google Scholar 

  • Small, D. S. (2012). Mediation analysis without sequential ignorability: Using baseline covariates interacted with random assignment as instrumental variables. Journal of Statistical Research, 46, 91–103.

    Google Scholar 

  • Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural equations models. In S. Leinhart (Ed.), Sociological methodology (pp. 290–312). San Francisco, CA: Jossey-Bass.

    Google Scholar 

  • Sobel, M. E. (2008). Identification of causal parameters in randomized studies with mediating variables. Journal of Educational and Behavioral Statistics, 33, 230–251.

    Article  Google Scholar 

  • Steyer, R., Mayer, A., & Fiege, C. (2014). Causal inference on total, direct, and indirect effects. In A. C. Michalos (Ed.), Encyclopedia of quality of life and well-being research (pp. 606–631). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Taguri, M., & Chiba, Y. (2015). A principal stratification approach for evaluating natural direct and indirect effects in the presence of treatment-induced intermediate confounding. Statistics in Medicine, 34, 131144.

    MathSciNet  Google Scholar 

  • Taguri, M., Featherstone, J., & Cheng, J. (2018). Causal mediation analysis with multiple causally non-ordered mediators. Statistical Methods in Medical Research, 27, 3–19. https://doi.org/10.1177/0962280215615899.

  • Tchetgen Tchetgen, E. J., & Shpitser, I. (2012). Semiparametric theory for causal mediation analysis: efficiency bounds, multiple robustness, and sensitivity analysis. Annals of Statistics, 40, 18161845.

    Article  MathSciNet  Google Scholar 

  • Tchetgen Tchetgen, E. J., & VanderWeele, T. J. (2014). Identification of natural direct effects when a confounder of the mediator is directly affected by exposure. Epidemiology, 25, 282291.

    Google Scholar 

  • Ten Have, T. R., Joffe, M., Lynch, K., Maisto, S., Brown, G., & Beck, A. (2007). Causal mediation analyses with rank preserving models. Biometrics, 63, 926–934.

    Article  MathSciNet  Google Scholar 

  • Ten Have, T. R., & Joffe, M. (2010). A review of causal estimation of effects in mediation analyses. Statistical Methods in Medical Research. in press.

    Google Scholar 

  • Terza, J., Basu, A., & Rathouz, P. (2008). Two-stage residual inclusion estimation: Addressing endogeneity in health econometric modeling. Health Economics, 27, 527–543.

    Google Scholar 

  • Valeri, L., & VanderWeele, T. J. (2013). Mediation analysis allowing for exposure-mediator interactions and causal interpretation: Theoretical assumptions and implementation with SAS and SPSS macros. Psychological Methods, 18, 137–150.

    Article  Google Scholar 

  • Van der Laan, M., & Petersen, M. (2008). Direct effect models. International Journal of Biostatistics, 4, Article 23.

    Google Scholar 

  • VanderWeele, T. J. (2008). Simple relations between principal stratification and direct and indirect effects. Statistical Probability Letter.

    Google Scholar 

  • VanderWeele, T. J., & Vansteelandt, S. (2009). Conceptual issues concerning mediation, interventions and composition. Statistics in Its Interface, 2, 457–468.

    Article  MathSciNet  Google Scholar 

  • VanderWeele, T. J., & Vansteelandt, S. (2010). Odds ratios for mediation analysis for a dichotomous outcome. American Journal of Epidemiology, 172, 1339–1348.

    Article  Google Scholar 

  • VanderWeele, T. J., & Vansteelandt, S. (2013). Mediation analysis with multiple mediators. Epidemiologic Methods, 2, 95–115.

    MATH  Google Scholar 

  • VanderWeele, T. J., & Chiba, Y. (2014). Sensitivity analysis for direct and indirect effects in the presence of exposure-induced mediator-outcome confounders. Epidemiology, Biostatistics, and Public Health, 11, e9027.

    Google Scholar 

  • VanderWeele, T. J., Vansteelandt, S., & Robins, J. M. (2014). Effect decomposition in the presence of an exposure-induced mediator-outcome confounder. Epidemiology, 25, 300–306.

    Article  Google Scholar 

  • Vansteelandt, S. (2009). Estimating direct effects in cohort and case-control studies. Epidemiology, 20, 851–860.

    Article  Google Scholar 

  • Vansteelandt, S. (2010). Estimation of controlled direct effects on a dichotomous outcome using logistic structural direct effect models. Biometrika, 97, 921–934.

    Article  MathSciNet  Google Scholar 

  • Vansteelandt, S., Bekaert, M., & Lange, T. (2012). Imputation strategies for the estimation of natural direct and indirect effects. Epidemiologic Methods, 1, 131–158.

    Article  Google Scholar 

  • Vansteelandt, S., & VanderWeele, T. J. (2012). Natural direct and indirect effects on the exposed: Effect demoposition under weak assumptions. Biometrics, 68, 1019–1027.

    Article  MathSciNet  Google Scholar 

  • Wang, W., & Albert, J. M. (2012). Estimation of mediation effects for zero-inflated regression models. Statistics in Medicine, 31, 3118–3132.

    Article  MathSciNet  Google Scholar 

  • Wright, S. (1920). The relative importance of heredity and environment in determing the piebald pattern of guinea pigs. Proceedings of the National Academy of Science, 6, 320–332.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dean Amid Ismail and Sungwoo Lim for providing the DDHP MI-DVD data which was performed with support from cooperative agreement U54 DE014261. This chapter was made possible by cooperative agreement U54 DE019285 from the National Institute of Dental and Craniofacial Research, a component of the United States National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart A. Gansky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheng, J., Gansky, S.A. (2018). Mediation Modeling in Randomized Trials with Non-normal Outcome Variables. In: Peace, K., Chen, DG., Menon, S. (eds) Biopharmaceutical Applied Statistics Symposium . ICSA Book Series in Statistics. Springer, Singapore. https://doi.org/10.1007/978-981-10-7820-0_10

Download citation

Publish with us

Policies and ethics