Skip to main content

Peptide-Based Hydrogels/Organogels: Assembly and Application

  • Chapter
  • First Online:
Nano/Micro-Structured Materials for Energy and Biomedical Applications

Abstract

Peptide-based organogels/hydrogels are flexible and versatile in biological and nanotechnological applications. These supramolecular gels consisted of supramolecular fibrous networks formed through non-covalent interactions, including hydrogen bonding, hydrophobic, electrostatic, ππ stacking, and van der Waals interactions. In this chapter, we present the assembly, structures, and governing interactions of these supramolecular gels based on a broad range of peptides. We also highlight the potential applications of these supramolecular gels in tissue engineering, drug delivery, templates for nanofabrication, and detergent of waste water, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang J, Liu K, Xing R, Yan X (2016) Peptide self-assembly: thermodynamics and kinetics. Chem Soc Rev 45:5589–5604

    Article  Google Scholar 

  2. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295(5564):2418–2421

    Article  Google Scholar 

  3. Mahadevi AS, Sastry GN (2016) Cooperativity in noncovalent interactions. Chem Rev 116:2775–2825

    Article  Google Scholar 

  4. Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21(10):1171–1178

    Article  Google Scholar 

  5. Evd Linden, Venema P (2007) Self-assembly and aggregation of proteins. Curr Opin Colloid Interface Sci 12:158–165

    Article  Google Scholar 

  6. Hauser CA, Zhang S (2010) Nanotechnology: peptides as biological semiconductors. Nature 468(7323):516–517

    Article  Google Scholar 

  7. Ulijn RV, Woolfson DN (2010) Peptide and protein based materials in 2010: from design and structure to function and application. Chem Soc Rev 39(9):3349–3350

    Article  Google Scholar 

  8. Löwik DW, Leunissen E, Van den Heuvel M, Hansen M, van Hest JC (2010) Stimulus responsive peptide based materials. Chem Soc Rev 39(9):3394–3412

    Article  Google Scholar 

  9. Seabra AB, Duran N (2013) Biological applications of peptides nanotubes: an overview. Peptides 39:47–54

    Article  Google Scholar 

  10. Adler-Abramovich L, Gazit E (2014) The physical properties of supramolecular peptide assemblies: from building block association to technological applications. Chem Soc Rev 43(20):6881–6893

    Article  Google Scholar 

  11. Aono M, Ariga K (2016) The way to nanoarchitectonics and the way of nanoarchitectonics. Adv Mater 28(6):989–992

    Article  Google Scholar 

  12. Shimizu T, Masuda M, Minamikawa H (2005) Supramolecular nanotube architectures based on amphiphilic molecules. Chem Rev 105(4):1401–1443

    Article  Google Scholar 

  13. Yan X, Zhu P, Li J (2010) Self-assembly and application of diphenylalanine-based nanostructures. Chem Soc Rev 39(6):1877–1890

    Article  Google Scholar 

  14. Hauser CAE, Zhang S (2010) Designer self-assembling peptide nanofiber biological materials. Chem Soc Rev 39:2780–2790

    Article  Google Scholar 

  15. Boyle AL, Woolfson DN (2011) De novo designed peptides for biological applications. Chem Soc Rev 40(8):4295–4306

    Article  Google Scholar 

  16. Fleming S, Ulijn RV (2014) Design of nanostructures based on aromatic peptide amphiphiles. Chem Soc Rev 43(23):8150–8177

    Article  Google Scholar 

  17. De Santis E, Ryadnov MG (2015) Peptide self-assembly for nanomaterials: the old new kid on the block. Chem Soc Rev 44:8288–8300

    Article  Google Scholar 

  18. Yan C, Pochan DJ (2010) Rheological properties of peptide-based hydrogels for biomedical and other applications. Chem Soc Rev 39(9):3528–3540

    Article  Google Scholar 

  19. Johnson EK, Adams DJ, Cameron PJ (2011) Peptide based low molecular weight gelators. J Mater Chem 21(7):2024–2027

    Article  Google Scholar 

  20. Dasgupta A, Mondal JH, Das D (2013) Peptide hydrogels. Rsc Adv 3(24):9117–9149

    Article  Google Scholar 

  21. Raeburn J, Cardoso AZ, Adams DJ (2013) The importance of the self-assembly process to control mechanical properties of low molecular weight hydrogels. Chem Soc Rev 42(12):5143–5156

    Article  Google Scholar 

  22. Tomasini C, Castellucci N (2013) Peptides and peptidomimetics that behave as low molecular weight gelators. Chem Soc Rev 42(1):156–172

    Article  Google Scholar 

  23. Fichman G, Gazit E (2014) Self-assembly of short peptides to form hydrogels: design of building blocks, physical properties and technological applications. Acta Biomater 10(4):1671–1682

    Article  Google Scholar 

  24. Jonker AM, Lowik DWPM, Hest JCMv (2012) Peptide- and protein-based hydrogels. Chem Mater 24:759–773

    Google Scholar 

  25. Rodriguez LMDL, Hemar Y, Cornish J, Brimble MA (2016) Structure-mechanical property correlations of hydrogel forming b-sheet peptides. Chem Soc Rev 45:4797–4828

    Article  Google Scholar 

  26. Naskar J, Palui G, Banerjee A (2009) Tetrapeptide-based hydrogels: for encapsulation and slow release of an anticancer drug at physiological pH. J Phys Chem B 113:11787–11792

    Article  Google Scholar 

  27. Woolfson DN, Ryadnov MG (2006) Peptide-based fibrous biomaterials: some things old, new and borrowed. Curr Opin Chem Biol 10:559–567

    Article  Google Scholar 

  28. Banwell EF, Abelardo ES, Adams DJ, Birchall MA, Corrigan A, Donald A, Kirkland M, Serpell LC, Butler MF, Woolfson ND (2009) Rational design and application of responsive a-helical peptide hydrogels. Nat Mater 8:596–600

    Google Scholar 

  29. Lu Y, Derreumaux P, Guo Z, Mousseau N, Wei G (2009) Thermodynamics and dynamics of amyloid peptide oligomerization are sequence dependent. Proteins 75(4):954–963

    Article  Google Scholar 

  30. Houton KA, Morris KL, Chen L, Schmidtmann M, Jones JTA, Serpell LC, Lloyd GO, Adams DJ (2012) On crystal versus fiber formation in dipeptide hydrogelator systems. Langmuir 28(25):9797–9806

    Article  Google Scholar 

  31. Sasselli IR, Halling PJ, Ulijn RV, Tuttle T (2016) Supramolecular fibers in gels can be at thermodynamic equilibrium: a simple packing model reveals preferential fibril formation versus crystallization. ACS Nano 10(2):2661–2668

    Article  Google Scholar 

  32. Zhu P, Yan X, Su Y, Yang Y, Li J (2010) Solvent-induced structural transition of self-assembled dipeptide: from organogels to microcrystals. Chem Eur J 16(10):3176–3183

    Article  Google Scholar 

  33. Wang J, Liu K, Yan L, Wang A, Bai S, Yan X (2016) Trace solvent as a predominant factor to tune dipeptide self-assembly. ACS Nano 10(2):2138–2143

    Article  Google Scholar 

  34. Moyer TJ, Finbloom JA, Chen F, Toft DJ, Cryns VL, Stupp SI (2014) pH and amphiphilic structure direct supramolecular behavior in biofunctional assemblies. J Am Chem Soc 136(42):14746–14752

    Article  Google Scholar 

  35. Liu XC, Zhu PL, Fei JB, Zhao J, Yan XH, Li JB (2015) Synthesis of peptide-based hybrid nanobelts with enhanced color emission by heat treatment or water induction. Chem Eur J 21(26):9461–9467

    Article  Google Scholar 

  36. Webber MJ, Newcomb CJ, Bitton R, Stupp SI (2011) Switching of self-assembly in a peptide nanostructure with a specific enzyme. Soft Matter 7(20):9665–9672

    Article  Google Scholar 

  37. Guilbaud J-B, Rochas C, Miller AF, Saiani A (2013) Effect of enzyme concentration of the morphology and properties of enzymatically triggered peptide hydrogels. Biomacromolecules 14(5):1403–1411

    Article  Google Scholar 

  38. Lan Y, Corradini M, Weiss R, Raghavan S, Rogers M (2015) To gel or not to gel: correlating molecular gelation with solvent parameters. Chem Soc Rev 44:6035–6058

    Article  Google Scholar 

  39. Diehn KK, Oh H, Hashemipour R, Weiss RG, Raghavan SR (2014) Insights into organogelation and its kinetics from Hansen solubility parameters. toward a priori predictions of molecular gelation. Soft Matter 10(15):2632–2640

    Article  Google Scholar 

  40. Reches M, Gazit E (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300(5619):625–627

    Article  Google Scholar 

  41. Pappas CG, Frederix PWJM, Mutasa T, Fleming S, Abul-Haija YM, Kelly SM, Gachagan A, Kalafatovic D, Trevino J, Ulijn RV, Bai S (2015) Alignment of nanostructured tripeptide gels by directional ultrasonication. Chem Commun 51(40):8465–8468

    Article  Google Scholar 

  42. Jayawarna V, Ali M, Jowitt TA, Miller AE, Saiani A, Gough JE, Ulijn RV (2006) Nanostructured hydrogels for three-dimensional cell culture through self-assembly of fluorenylmethoxycarbonyl-dipeptides. Adv Mater 18(5):611–614

    Article  Google Scholar 

  43. Smith AM, Williams RJ, Tang C, Coppo P, Collins RF, Turner ML, Saiani A, Ulijn RV (2008) Fmoc-diphenylalanine self assembles to a hydrogel via a novel architecture based on p-p interlocked b-sheets. Adv Mater 20:37–41

    Article  Google Scholar 

  44. Tang C, Smith AM, Collins RF, Ulijn RV, Saiani A (2009) Fmoc-diphenylalanine self-assembly mechanism induces apparent pK(a) shifts. Langmuir 25(16):9447–9453

    Article  Google Scholar 

  45. Mahler A, Reches M, Rechter M, Cohen S, Gazit E (2006) Rigid, self-assembled hydrogel composed of a modified aromatic dipeptide. Adv Mater 18(11):1365–1370

    Article  Google Scholar 

  46. Yang Z, Liang G, Xu B (2006) Supramolecular hydrogels based on b-amino acid derivatives. Chem Commun 738–740

    Google Scholar 

  47. Toledano S, Williams RJ, Jayawarna V, Ulijn RV (2006) Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis. J Am Chem Soc 128(4):1070–1071

    Article  Google Scholar 

  48. Das AK, Collins R, Ulijn RV (2008) Exploiting enzymatic (reversed) hydrolysis in directed self-assembly of peptide nanostructures. Small 2:279–287

    Article  Google Scholar 

  49. Orbach R, Adler-Abramovich L, Zigerson S, Mironi-Harpaz I, Seliktar D, Gazit E (2009) Self-assembled fmoc-peptides as a platform for the formation of nanostructures and hydrogels. Biomacromol 10:2646–2651

    Article  Google Scholar 

  50. Ma M, Kuang Y, Gao Y, Zhang Y, Gao P, Xu B (2010) Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels. J Am Chem Soc 132(8):2719–2728

    Article  Google Scholar 

  51. Hughes M, Frederix PWJM, Raeburn J, Birchall LS, Sadownik J, Coomer FC, Lin IH, Cussen EJ, Hunt NT, Tuttle T, Webb SJ, Adams DJ, Ulijn RV (2012) Sequence/structure relationships in aromatic dipeptide hydrogels formed under thermodynamic control by enzyme-assisted self-assembly. Soft Matter 8(20):5595–5602

    Article  Google Scholar 

  52. Gao Y, Yang Z, Kuang Y, Ma M-L, Li J, Zhao F, Xu B (2010) Enzyme-instructed self-assembly of peptide derivatives of form nanofibers and hydrogels. Biopolymers 94:19–31

    Article  Google Scholar 

  53. Cheng G, Castelletto V, Jones RR, Connon CJ, Hamley IW (2011) Hydrogelation of self-assembling RGD-based peptides. Soft Matter 7:1326–1333

    Article  Google Scholar 

  54. Cui HG, Webber MJ, Stupp SI (2010) Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers 94(1):1–18

    Article  Google Scholar 

  55. Claussen RC, Rabatic BM, Stupp SI (2003) Aqueous self-assembly of unsymmetric peptide bolaamphiphiles into nanofibers with hydrophilic cores and surfaces. J Am Chem Soc 125:12680–12681

    Article  Google Scholar 

  56. Stendahl JC, Rao MS, Guler MO, Stupp SI (2006) Intermolecular forces in the self-assembly of peptide amphiphile nanofibers. Adv Funct Mater 16(4):499–508

    Article  Google Scholar 

  57. Schneider JP, Pochan DJ, Ozbas B, Rajagopal K, Pakstis L, Kretsinger J (2002) Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J Am Chem Soc 124:15030–15037

    Article  Google Scholar 

  58. Pochan DJ, Schneider JP, Kretsinger J, Ozbas B, Rajagopal K, Haines L (2003) Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide. J Am Chem Soc 125:11802–11803

    Article  Google Scholar 

  59. Haines LA, Rajagopal K, Ozbas B, Salick DA, Pochan DJ, Schneider JP (2005) Light-activated hydrogel formation via the triggered folding and self-assembly of a designed peptide. J Am Chem Soc 127:17025–17029

    Article  Google Scholar 

  60. Yucel T, Micklitsch CM, Schneider JP, Pochan DJ (2008) Direct observation of early-time hydrogelation in b-hairpin peptide self-assembly. Macromolecules 41:5763–5772

    Article  Google Scholar 

  61. Hule RA, Nagarkar RP, Hammouda B, Schneider JP, Pochan DJ (2009) Dependence of self-assembled peptide hydrogel network structure on local fibril nanostructure. Macromolecules 42:7137–7145

    Article  Google Scholar 

  62. Nagy KJ, Giano MC, Jin A, Pochan DJ, Schneider JP (2011) Enhanced mechanical rigidity of hydrogels formed from enantiomeric peptide assemblies. J Am Chem Soc 133:14975–14977

    Article  Google Scholar 

  63. Rubio J, Alfonso I, Burguete MI, Luis SV (2012) Interplay between hydrophilic and hydrophobic interactions in the self-assembly of a gemini amphiphilic pseudopeptide: from nano-spheres to hydrogels. Chem Commun 48:2210–2212

    Article  Google Scholar 

  64. Nebot VJ, Armengol J, Smets J, Prieto SF, Escuder B, Miravet JF (2012) Molecular hydrogels from bolaform amino acid derivatives: a structure-properties study based on the thermodynamics of gel solubilization. Chem EurJ 18:4063–4072

    Article  Google Scholar 

  65. Nowak AP, Breedveld V, Pakstis L, Ozbas B, Pine DJ, Pochan D, Deming TJ (2002) Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 417:424–428

    Article  Google Scholar 

  66. Breedveld V, Nowak AP, Sato J, Deming TJ, Pine DJ (2004) Rheology of block copolypeptide solutions: hydrogels with tunable properties. Macromolecules 37:3943–3953

    Article  Google Scholar 

  67. Deming TJ (2005) Polypeptide hydrogels via a unique assembly mechanism. Soft Matter 1:28–35

    Article  Google Scholar 

  68. Li Z, Deming TJ (2010) Tunable hydrogel morphology via self-assembly of amphiphilic pentablock copolypeptides. Soft Matter 6:2546–2551

    Article  Google Scholar 

  69. Glassman MJ, Olsen BD (2015) Arrested phase separation of elastin-like polypeptide solutions yields stiff, thermoresponsive gels. Biomacromol 16:3762–3773

    Article  Google Scholar 

  70. Caliari SR, Burdick JA (2016) A practical guide to hydrogels for cell culture. Nat Methods 13:405–414

    Article  Google Scholar 

  71. Wang H, Heilshorn SC (2015) Adaptable hydrogel networks with reversible linkages for tissue engineering. Adv Mater 27:3717–3736

    Article  Google Scholar 

  72. Hilderbrand AM, Ovadia EM, Rehmann MS, Kharkar PM, Guo C, Kloxin AM (2016) Biomaterials for 4D stem cell culture. Curr Opin Solid State Mater Sci 20:212–224

    Article  Google Scholar 

  73. Chen G, Chen J, Liu Q, Ou C, Gao J (2015) Enzymatic formation of a meta-stable supramolecular hydrogel for 3D cell culture. Rsc Adv 5:30675–30678

    Article  Google Scholar 

  74. Ryan DM, Nilsson BL (2012) Self-assembled amino acids and dipeptides as noncovalent hydrogels for tissue engineering. Polym Chem 3:18–33

    Article  Google Scholar 

  75. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329

    Article  Google Scholar 

  76. Mata A, Hsu L, Capito R, Aparicio C, Henriksonc K, Stupp SI (2009) Micropatterning of bioactive self-assembling gels. Soft Matter 5:1228–1236

    Article  Google Scholar 

  77. Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, Grodzinsky AJ (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci U S A 99(15):9996–10001

    Article  Google Scholar 

  78. Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, Grodzinsky AJ (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci U S A 99:9996–10001

    Article  Google Scholar 

  79. Salick DA, Kretsinger JK, Pochan DJ, Schneider JP (2007) Inherent antibacterial activity of a peptide-based b-hairpin hydrogel. J Am Chem Soc 129:14793–14799

    Article  Google Scholar 

  80. Zhou M, Smith AM, Das AK, Hodson NW, Collins RF, Ulijn RV, Gough JE (2009) Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells. Biomaterials 30:2523–2530

    Article  Google Scholar 

  81. Jayawarna V, Richardson SM, Hirst AR, Hodson NW, Saiani A, Gough JE, Ulijn RV (2009) Introducing chemical functionality in Fmoc-peptide gels for cell culture. Acta Biomater 5:934–943

    Article  Google Scholar 

  82. Tian YF, Devgun JM, Collier JH (2011) Fibrillized peptide microgels for cell encapsulation and 3D cell culture. Soft Matter 7:6005–6011

    Article  Google Scholar 

  83. Wieduwild R, Krishnan S, Chwalek K, Boden A, Nowak M, Drechsel D, Werner C, Zhang Y (2015) Noncovalent hydrogel beads as microcarriers for cell culture. Angew Chem Int Ed 54(13):3962–3966

    Article  Google Scholar 

  84. Zamuner A, Cavo M, Scaglione S, Messina GML, Russo T, Gloria A, Marletta G, Dettin M (2016) Design of decorated self-assembling peptide hydrogels as architecture for mesenchymal stem cells. Materials 9:727

    Article  Google Scholar 

  85. Loo Y, Hauser CAE (2016) Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications. Biomed Mater 11:014103

    Article  Google Scholar 

  86. Zhang SM, Greenfield MA, Mata A, Palmer LC, Bitton R, Mantei JR, Aparicio C, de la Cruz MO, Stupp SI (2010) A self-assembly pathway to aligned monodomain gels. Nat Mater 9(7):594–601

    Article  Google Scholar 

  87. Bysell H, Månsson R, Hansson P, Malmsten M (2011) Microgels and microcapsules in peptide and protein drug delivery. Adv Drug Del Rev 63:1172–1185

    Article  Google Scholar 

  88. Wang H, Feng Z, Xu B D-amino acid-containing supramolecular nanofibers for potential cancer therapeutics. Adv Drug Del Rev. doi: https://doi.org/10.1016/j.addr.2016.04.008

  89. Williams RJ, Hall TE, Glattauer V, White J, Pasic PJ, Sorensen AB, Waddington L, McLean KM, Currie PD, Hartley PG (2011) The in vivo performance of an enzyme-assisted self-assembled peptide/protein hydrogel. Biomaterials 32(22):5304–5310

    Article  Google Scholar 

  90. Gao J, Zheng WT, Kong DL, Yang ZM (2011) Dual enzymes regulate the molecular self-assembly of tetra-peptide derivatives. Soft Matter 7(21):10443–10448

    Article  Google Scholar 

  91. Ruana L, Zhanga H, Luoa H, Liua J, Tanga F, Shi Y-K, Zhaoa X (2009) Designed amphiphilic peptide forms stable nanoweb, slowly releases encapsulated hydrophobic drug, and accelerates animal hemostasis. Proc Natl Acad Sci U S A 106(13):5105–5110

    Article  Google Scholar 

  92. Li J, Gao Y, Kuang Y, Shi J, Du X, Zhou J, Wang H, Yang Z, Xu B (2013) Dephosphory-lation of D-peptide derivatives to form biofunctional, supramolecular nanofibers/hydrogels and their potential applications for intracellular imaging and intratumoral chemotherapy. J Am Chem Soc 135:9907–9914

    Article  Google Scholar 

  93. Kuang Y, Shi J, Li J, Yuan D, Alberti KA, Xu Q, Xu B (2014) Pericellular hydrogel/nanonets inhibit cancer cells. Angew Chem Int Ed 53:8104–8107

    Article  Google Scholar 

  94. Ischakov R, Adler-Abramovich L, Buzhansky L, Shekhter T, Gazit E (2013) Peptide-based hydrogel nanoparticles as effective drug delivery agents. Biorg Med Chem 21:3517–3522

    Article  Google Scholar 

  95. Xing RR, Liu K, Jiao TF, Zhang N, Ma K, Zhang RY, Zou QL, Ma GH, Yan XH (2016) An injectable self-assembling collagen-gold hybrid hydrogel for combinatorial antitumor photothermal/photodynamic therapy. Adv Mater 28:3669–3676

    Article  Google Scholar 

  96. Thornton PD, Mart RJ, Webbb SJ, Ulijn RV (2008) Enzyme-responsive hydrogel particles for the controlled release of proteins: designing peptide actuators to match payload. Soft Matter 4:821–827

    Article  Google Scholar 

  97. Maity I, Rasale DB, Das AK (2012) Sonication induced peptide-appended bolaamphiphile hydrogels for in situ generation and catalytic activity of Pt nanoparticles. Soft Matter 8:5301–5308

    Article  Google Scholar 

  98. Dutta S, Shome A, Kar T, Das PK (2011) Counterion-induced modulation in the antimicrobial activity and biocompatibility of amphiphilic hydrogelators: influence of in-situ-synthesized Ag-nanoparticle on the bactericidal property. Langmuir 27:5000–50008

    Article  Google Scholar 

  99. Sharma KP, Harniman R, Farrugia T, Briscoe WH, Perriman AW, Mann S (2016) Dynamic behavior in enzyme-polymer surfactant hydrogel films. Adv Mater 28:1597–1602

    Article  Google Scholar 

  100. Yan X, Cui Y, He Q, Wang K, Li J (2008) Organogels based on self-assembly of diphenylalanine peptide and their application to immobilize quantum dots. Chem Mater 20(4):1522–1526

    Article  Google Scholar 

  101. Adhikari B, Nanda J, Banerjee A (2011) Pyrene-containing peptide-based fluorescent organogels: inclusion of graphene into the organogel. Chem Eur J 17:11488–11496

    Article  Google Scholar 

  102. Afrasiabi R, Kraatz H-B (2013) Small-peptide-based organogel kit: towards the development of multicomponent self-sorting organogels. Chem Eur J 19:15862–15871

    Article  Google Scholar 

  103. Sone ED, Zubarev ER, Stupp SI (2002) Semiconductor nanohelices templated by supramolecular ribbons. Angew Chem Int Ed 41:1706–1709

    Article  Google Scholar 

  104. Ray S, Das AK, Banerjee A (2006) Smart oligopeptide gels: in situ formation and stabilization of gold and silver nanoparticles within supramolecular organogel networks. Chem Commun 26:2816–2818

    Article  Google Scholar 

  105. Liu Y, Wang Y, Jin L, Chen T, Yin B (2016) MPTTF-containing tripeptide-based organogels: receptor for 2, 4, 6-trinitrophenol and multiple stimuli-responsive properties. Soft Matter 12:934–945

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Project Nos. 21522307, 21473208, and 91434103), the Talent Fund of the Recruitment Program of Global Youth Experts, and the Chinese Academy of Sciences (CAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuehai Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, J., Yan, X. (2018). Peptide-Based Hydrogels/Organogels: Assembly and Application. In: Li, B., Jiao, T. (eds) Nano/Micro-Structured Materials for Energy and Biomedical Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-7787-6_6

Download citation

Publish with us

Policies and ethics