Peptide-Based Hydrogels/Organogels: Assembly and Application

  • Juan Wang
  • Xuehai Yan


Peptide-based organogels/hydrogels are flexible and versatile in biological and nanotechnological applications. These supramolecular gels consisted of supramolecular fibrous networks formed through non-covalent interactions, including hydrogen bonding, hydrophobic, electrostatic, ππ stacking, and van der Waals interactions. In this chapter, we present the assembly, structures, and governing interactions of these supramolecular gels based on a broad range of peptides. We also highlight the potential applications of these supramolecular gels in tissue engineering, drug delivery, templates for nanofabrication, and detergent of waste water, etc.


Peptide self-assembly Organogels/hydrogels Non-covalent interactions Tissue engineering Drug delivery 



This work was supported by the National Natural Science Foundation of China (Project Nos. 21522307, 21473208, and 91434103), the Talent Fund of the Recruitment Program of Global Youth Experts, and the Chinese Academy of Sciences (CAS).


  1. 1.
    Wang J, Liu K, Xing R, Yan X (2016) Peptide self-assembly: thermodynamics and kinetics. Chem Soc Rev 45:5589–5604CrossRefGoogle Scholar
  2. 2.
    Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295(5564):2418–2421CrossRefGoogle Scholar
  3. 3.
    Mahadevi AS, Sastry GN (2016) Cooperativity in noncovalent interactions. Chem Rev 116:2775–2825CrossRefGoogle Scholar
  4. 4.
    Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21(10):1171–1178CrossRefGoogle Scholar
  5. 5.
    Evd Linden, Venema P (2007) Self-assembly and aggregation of proteins. Curr Opin Colloid Interface Sci 12:158–165CrossRefGoogle Scholar
  6. 6.
    Hauser CA, Zhang S (2010) Nanotechnology: peptides as biological semiconductors. Nature 468(7323):516–517CrossRefGoogle Scholar
  7. 7.
    Ulijn RV, Woolfson DN (2010) Peptide and protein based materials in 2010: from design and structure to function and application. Chem Soc Rev 39(9):3349–3350CrossRefGoogle Scholar
  8. 8.
    Löwik DW, Leunissen E, Van den Heuvel M, Hansen M, van Hest JC (2010) Stimulus responsive peptide based materials. Chem Soc Rev 39(9):3394–3412CrossRefGoogle Scholar
  9. 9.
    Seabra AB, Duran N (2013) Biological applications of peptides nanotubes: an overview. Peptides 39:47–54CrossRefGoogle Scholar
  10. 10.
    Adler-Abramovich L, Gazit E (2014) The physical properties of supramolecular peptide assemblies: from building block association to technological applications. Chem Soc Rev 43(20):6881–6893CrossRefGoogle Scholar
  11. 11.
    Aono M, Ariga K (2016) The way to nanoarchitectonics and the way of nanoarchitectonics. Adv Mater 28(6):989–992CrossRefGoogle Scholar
  12. 12.
    Shimizu T, Masuda M, Minamikawa H (2005) Supramolecular nanotube architectures based on amphiphilic molecules. Chem Rev 105(4):1401–1443CrossRefGoogle Scholar
  13. 13.
    Yan X, Zhu P, Li J (2010) Self-assembly and application of diphenylalanine-based nanostructures. Chem Soc Rev 39(6):1877–1890CrossRefGoogle Scholar
  14. 14.
    Hauser CAE, Zhang S (2010) Designer self-assembling peptide nanofiber biological materials. Chem Soc Rev 39:2780–2790CrossRefGoogle Scholar
  15. 15.
    Boyle AL, Woolfson DN (2011) De novo designed peptides for biological applications. Chem Soc Rev 40(8):4295–4306CrossRefGoogle Scholar
  16. 16.
    Fleming S, Ulijn RV (2014) Design of nanostructures based on aromatic peptide amphiphiles. Chem Soc Rev 43(23):8150–8177CrossRefGoogle Scholar
  17. 17.
    De Santis E, Ryadnov MG (2015) Peptide self-assembly for nanomaterials: the old new kid on the block. Chem Soc Rev 44:8288–8300CrossRefGoogle Scholar
  18. 18.
    Yan C, Pochan DJ (2010) Rheological properties of peptide-based hydrogels for biomedical and other applications. Chem Soc Rev 39(9):3528–3540CrossRefGoogle Scholar
  19. 19.
    Johnson EK, Adams DJ, Cameron PJ (2011) Peptide based low molecular weight gelators. J Mater Chem 21(7):2024–2027CrossRefGoogle Scholar
  20. 20.
    Dasgupta A, Mondal JH, Das D (2013) Peptide hydrogels. Rsc Adv 3(24):9117–9149CrossRefGoogle Scholar
  21. 21.
    Raeburn J, Cardoso AZ, Adams DJ (2013) The importance of the self-assembly process to control mechanical properties of low molecular weight hydrogels. Chem Soc Rev 42(12):5143–5156CrossRefGoogle Scholar
  22. 22.
    Tomasini C, Castellucci N (2013) Peptides and peptidomimetics that behave as low molecular weight gelators. Chem Soc Rev 42(1):156–172CrossRefGoogle Scholar
  23. 23.
    Fichman G, Gazit E (2014) Self-assembly of short peptides to form hydrogels: design of building blocks, physical properties and technological applications. Acta Biomater 10(4):1671–1682CrossRefGoogle Scholar
  24. 24.
    Jonker AM, Lowik DWPM, Hest JCMv (2012) Peptide- and protein-based hydrogels. Chem Mater 24:759–773Google Scholar
  25. 25.
    Rodriguez LMDL, Hemar Y, Cornish J, Brimble MA (2016) Structure-mechanical property correlations of hydrogel forming b-sheet peptides. Chem Soc Rev 45:4797–4828CrossRefGoogle Scholar
  26. 26.
    Naskar J, Palui G, Banerjee A (2009) Tetrapeptide-based hydrogels: for encapsulation and slow release of an anticancer drug at physiological pH. J Phys Chem B 113:11787–11792CrossRefGoogle Scholar
  27. 27.
    Woolfson DN, Ryadnov MG (2006) Peptide-based fibrous biomaterials: some things old, new and borrowed. Curr Opin Chem Biol 10:559–567CrossRefGoogle Scholar
  28. 28.
    Banwell EF, Abelardo ES, Adams DJ, Birchall MA, Corrigan A, Donald A, Kirkland M, Serpell LC, Butler MF, Woolfson ND (2009) Rational design and application of responsive a-helical peptide hydrogels. Nat Mater 8:596–600Google Scholar
  29. 29.
    Lu Y, Derreumaux P, Guo Z, Mousseau N, Wei G (2009) Thermodynamics and dynamics of amyloid peptide oligomerization are sequence dependent. Proteins 75(4):954–963CrossRefGoogle Scholar
  30. 30.
    Houton KA, Morris KL, Chen L, Schmidtmann M, Jones JTA, Serpell LC, Lloyd GO, Adams DJ (2012) On crystal versus fiber formation in dipeptide hydrogelator systems. Langmuir 28(25):9797–9806CrossRefGoogle Scholar
  31. 31.
    Sasselli IR, Halling PJ, Ulijn RV, Tuttle T (2016) Supramolecular fibers in gels can be at thermodynamic equilibrium: a simple packing model reveals preferential fibril formation versus crystallization. ACS Nano 10(2):2661–2668CrossRefGoogle Scholar
  32. 32.
    Zhu P, Yan X, Su Y, Yang Y, Li J (2010) Solvent-induced structural transition of self-assembled dipeptide: from organogels to microcrystals. Chem Eur J 16(10):3176–3183CrossRefGoogle Scholar
  33. 33.
    Wang J, Liu K, Yan L, Wang A, Bai S, Yan X (2016) Trace solvent as a predominant factor to tune dipeptide self-assembly. ACS Nano 10(2):2138–2143CrossRefGoogle Scholar
  34. 34.
    Moyer TJ, Finbloom JA, Chen F, Toft DJ, Cryns VL, Stupp SI (2014) pH and amphiphilic structure direct supramolecular behavior in biofunctional assemblies. J Am Chem Soc 136(42):14746–14752CrossRefGoogle Scholar
  35. 35.
    Liu XC, Zhu PL, Fei JB, Zhao J, Yan XH, Li JB (2015) Synthesis of peptide-based hybrid nanobelts with enhanced color emission by heat treatment or water induction. Chem Eur J 21(26):9461–9467CrossRefGoogle Scholar
  36. 36.
    Webber MJ, Newcomb CJ, Bitton R, Stupp SI (2011) Switching of self-assembly in a peptide nanostructure with a specific enzyme. Soft Matter 7(20):9665–9672CrossRefGoogle Scholar
  37. 37.
    Guilbaud J-B, Rochas C, Miller AF, Saiani A (2013) Effect of enzyme concentration of the morphology and properties of enzymatically triggered peptide hydrogels. Biomacromolecules 14(5):1403–1411CrossRefGoogle Scholar
  38. 38.
    Lan Y, Corradini M, Weiss R, Raghavan S, Rogers M (2015) To gel or not to gel: correlating molecular gelation with solvent parameters. Chem Soc Rev 44:6035–6058CrossRefGoogle Scholar
  39. 39.
    Diehn KK, Oh H, Hashemipour R, Weiss RG, Raghavan SR (2014) Insights into organogelation and its kinetics from Hansen solubility parameters. toward a priori predictions of molecular gelation. Soft Matter 10(15):2632–2640CrossRefGoogle Scholar
  40. 40.
    Reches M, Gazit E (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300(5619):625–627CrossRefGoogle Scholar
  41. 41.
    Pappas CG, Frederix PWJM, Mutasa T, Fleming S, Abul-Haija YM, Kelly SM, Gachagan A, Kalafatovic D, Trevino J, Ulijn RV, Bai S (2015) Alignment of nanostructured tripeptide gels by directional ultrasonication. Chem Commun 51(40):8465–8468CrossRefGoogle Scholar
  42. 42.
    Jayawarna V, Ali M, Jowitt TA, Miller AE, Saiani A, Gough JE, Ulijn RV (2006) Nanostructured hydrogels for three-dimensional cell culture through self-assembly of fluorenylmethoxycarbonyl-dipeptides. Adv Mater 18(5):611–614CrossRefGoogle Scholar
  43. 43.
    Smith AM, Williams RJ, Tang C, Coppo P, Collins RF, Turner ML, Saiani A, Ulijn RV (2008) Fmoc-diphenylalanine self assembles to a hydrogel via a novel architecture based on p-p interlocked b-sheets. Adv Mater 20:37–41CrossRefGoogle Scholar
  44. 44.
    Tang C, Smith AM, Collins RF, Ulijn RV, Saiani A (2009) Fmoc-diphenylalanine self-assembly mechanism induces apparent pK(a) shifts. Langmuir 25(16):9447–9453CrossRefGoogle Scholar
  45. 45.
    Mahler A, Reches M, Rechter M, Cohen S, Gazit E (2006) Rigid, self-assembled hydrogel composed of a modified aromatic dipeptide. Adv Mater 18(11):1365–1370CrossRefGoogle Scholar
  46. 46.
    Yang Z, Liang G, Xu B (2006) Supramolecular hydrogels based on b-amino acid derivatives. Chem Commun 738–740Google Scholar
  47. 47.
    Toledano S, Williams RJ, Jayawarna V, Ulijn RV (2006) Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis. J Am Chem Soc 128(4):1070–1071CrossRefGoogle Scholar
  48. 48.
    Das AK, Collins R, Ulijn RV (2008) Exploiting enzymatic (reversed) hydrolysis in directed self-assembly of peptide nanostructures. Small 2:279–287CrossRefGoogle Scholar
  49. 49.
    Orbach R, Adler-Abramovich L, Zigerson S, Mironi-Harpaz I, Seliktar D, Gazit E (2009) Self-assembled fmoc-peptides as a platform for the formation of nanostructures and hydrogels. Biomacromol 10:2646–2651CrossRefGoogle Scholar
  50. 50.
    Ma M, Kuang Y, Gao Y, Zhang Y, Gao P, Xu B (2010) Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels. J Am Chem Soc 132(8):2719–2728CrossRefGoogle Scholar
  51. 51.
    Hughes M, Frederix PWJM, Raeburn J, Birchall LS, Sadownik J, Coomer FC, Lin IH, Cussen EJ, Hunt NT, Tuttle T, Webb SJ, Adams DJ, Ulijn RV (2012) Sequence/structure relationships in aromatic dipeptide hydrogels formed under thermodynamic control by enzyme-assisted self-assembly. Soft Matter 8(20):5595–5602CrossRefGoogle Scholar
  52. 52.
    Gao Y, Yang Z, Kuang Y, Ma M-L, Li J, Zhao F, Xu B (2010) Enzyme-instructed self-assembly of peptide derivatives of form nanofibers and hydrogels. Biopolymers 94:19–31CrossRefGoogle Scholar
  53. 53.
    Cheng G, Castelletto V, Jones RR, Connon CJ, Hamley IW (2011) Hydrogelation of self-assembling RGD-based peptides. Soft Matter 7:1326–1333CrossRefGoogle Scholar
  54. 54.
    Cui HG, Webber MJ, Stupp SI (2010) Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers 94(1):1–18CrossRefGoogle Scholar
  55. 55.
    Claussen RC, Rabatic BM, Stupp SI (2003) Aqueous self-assembly of unsymmetric peptide bolaamphiphiles into nanofibers with hydrophilic cores and surfaces. J Am Chem Soc 125:12680–12681CrossRefGoogle Scholar
  56. 56.
    Stendahl JC, Rao MS, Guler MO, Stupp SI (2006) Intermolecular forces in the self-assembly of peptide amphiphile nanofibers. Adv Funct Mater 16(4):499–508CrossRefGoogle Scholar
  57. 57.
    Schneider JP, Pochan DJ, Ozbas B, Rajagopal K, Pakstis L, Kretsinger J (2002) Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J Am Chem Soc 124:15030–15037CrossRefGoogle Scholar
  58. 58.
    Pochan DJ, Schneider JP, Kretsinger J, Ozbas B, Rajagopal K, Haines L (2003) Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide. J Am Chem Soc 125:11802–11803CrossRefGoogle Scholar
  59. 59.
    Haines LA, Rajagopal K, Ozbas B, Salick DA, Pochan DJ, Schneider JP (2005) Light-activated hydrogel formation via the triggered folding and self-assembly of a designed peptide. J Am Chem Soc 127:17025–17029CrossRefGoogle Scholar
  60. 60.
    Yucel T, Micklitsch CM, Schneider JP, Pochan DJ (2008) Direct observation of early-time hydrogelation in b-hairpin peptide self-assembly. Macromolecules 41:5763–5772CrossRefGoogle Scholar
  61. 61.
    Hule RA, Nagarkar RP, Hammouda B, Schneider JP, Pochan DJ (2009) Dependence of self-assembled peptide hydrogel network structure on local fibril nanostructure. Macromolecules 42:7137–7145CrossRefGoogle Scholar
  62. 62.
    Nagy KJ, Giano MC, Jin A, Pochan DJ, Schneider JP (2011) Enhanced mechanical rigidity of hydrogels formed from enantiomeric peptide assemblies. J Am Chem Soc 133:14975–14977CrossRefGoogle Scholar
  63. 63.
    Rubio J, Alfonso I, Burguete MI, Luis SV (2012) Interplay between hydrophilic and hydrophobic interactions in the self-assembly of a gemini amphiphilic pseudopeptide: from nano-spheres to hydrogels. Chem Commun 48:2210–2212CrossRefGoogle Scholar
  64. 64.
    Nebot VJ, Armengol J, Smets J, Prieto SF, Escuder B, Miravet JF (2012) Molecular hydrogels from bolaform amino acid derivatives: a structure-properties study based on the thermodynamics of gel solubilization. Chem EurJ 18:4063–4072CrossRefGoogle Scholar
  65. 65.
    Nowak AP, Breedveld V, Pakstis L, Ozbas B, Pine DJ, Pochan D, Deming TJ (2002) Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 417:424–428CrossRefGoogle Scholar
  66. 66.
    Breedveld V, Nowak AP, Sato J, Deming TJ, Pine DJ (2004) Rheology of block copolypeptide solutions: hydrogels with tunable properties. Macromolecules 37:3943–3953CrossRefGoogle Scholar
  67. 67.
    Deming TJ (2005) Polypeptide hydrogels via a unique assembly mechanism. Soft Matter 1:28–35CrossRefGoogle Scholar
  68. 68.
    Li Z, Deming TJ (2010) Tunable hydrogel morphology via self-assembly of amphiphilic pentablock copolypeptides. Soft Matter 6:2546–2551CrossRefGoogle Scholar
  69. 69.
    Glassman MJ, Olsen BD (2015) Arrested phase separation of elastin-like polypeptide solutions yields stiff, thermoresponsive gels. Biomacromol 16:3762–3773CrossRefGoogle Scholar
  70. 70.
    Caliari SR, Burdick JA (2016) A practical guide to hydrogels for cell culture. Nat Methods 13:405–414CrossRefGoogle Scholar
  71. 71.
    Wang H, Heilshorn SC (2015) Adaptable hydrogel networks with reversible linkages for tissue engineering. Adv Mater 27:3717–3736CrossRefGoogle Scholar
  72. 72.
    Hilderbrand AM, Ovadia EM, Rehmann MS, Kharkar PM, Guo C, Kloxin AM (2016) Biomaterials for 4D stem cell culture. Curr Opin Solid State Mater Sci 20:212–224CrossRefGoogle Scholar
  73. 73.
    Chen G, Chen J, Liu Q, Ou C, Gao J (2015) Enzymatic formation of a meta-stable supramolecular hydrogel for 3D cell culture. Rsc Adv 5:30675–30678CrossRefGoogle Scholar
  74. 74.
    Ryan DM, Nilsson BL (2012) Self-assembled amino acids and dipeptides as noncovalent hydrogels for tissue engineering. Polym Chem 3:18–33CrossRefGoogle Scholar
  75. 75.
    Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329CrossRefGoogle Scholar
  76. 76.
    Mata A, Hsu L, Capito R, Aparicio C, Henriksonc K, Stupp SI (2009) Micropatterning of bioactive self-assembling gels. Soft Matter 5:1228–1236CrossRefGoogle Scholar
  77. 77.
    Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, Grodzinsky AJ (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci U S A 99(15):9996–10001CrossRefGoogle Scholar
  78. 78.
    Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, Grodzinsky AJ (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci U S A 99:9996–10001CrossRefGoogle Scholar
  79. 79.
    Salick DA, Kretsinger JK, Pochan DJ, Schneider JP (2007) Inherent antibacterial activity of a peptide-based b-hairpin hydrogel. J Am Chem Soc 129:14793–14799CrossRefGoogle Scholar
  80. 80.
    Zhou M, Smith AM, Das AK, Hodson NW, Collins RF, Ulijn RV, Gough JE (2009) Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells. Biomaterials 30:2523–2530CrossRefGoogle Scholar
  81. 81.
    Jayawarna V, Richardson SM, Hirst AR, Hodson NW, Saiani A, Gough JE, Ulijn RV (2009) Introducing chemical functionality in Fmoc-peptide gels for cell culture. Acta Biomater 5:934–943CrossRefGoogle Scholar
  82. 82.
    Tian YF, Devgun JM, Collier JH (2011) Fibrillized peptide microgels for cell encapsulation and 3D cell culture. Soft Matter 7:6005–6011CrossRefGoogle Scholar
  83. 83.
    Wieduwild R, Krishnan S, Chwalek K, Boden A, Nowak M, Drechsel D, Werner C, Zhang Y (2015) Noncovalent hydrogel beads as microcarriers for cell culture. Angew Chem Int Ed 54(13):3962–3966CrossRefGoogle Scholar
  84. 84.
    Zamuner A, Cavo M, Scaglione S, Messina GML, Russo T, Gloria A, Marletta G, Dettin M (2016) Design of decorated self-assembling peptide hydrogels as architecture for mesenchymal stem cells. Materials 9:727CrossRefGoogle Scholar
  85. 85.
    Loo Y, Hauser CAE (2016) Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications. Biomed Mater 11:014103CrossRefGoogle Scholar
  86. 86.
    Zhang SM, Greenfield MA, Mata A, Palmer LC, Bitton R, Mantei JR, Aparicio C, de la Cruz MO, Stupp SI (2010) A self-assembly pathway to aligned monodomain gels. Nat Mater 9(7):594–601CrossRefGoogle Scholar
  87. 87.
    Bysell H, Månsson R, Hansson P, Malmsten M (2011) Microgels and microcapsules in peptide and protein drug delivery. Adv Drug Del Rev 63:1172–1185CrossRefGoogle Scholar
  88. 88.
    Wang H, Feng Z, Xu B D-amino acid-containing supramolecular nanofibers for potential cancer therapeutics. Adv Drug Del Rev. doi:
  89. 89.
    Williams RJ, Hall TE, Glattauer V, White J, Pasic PJ, Sorensen AB, Waddington L, McLean KM, Currie PD, Hartley PG (2011) The in vivo performance of an enzyme-assisted self-assembled peptide/protein hydrogel. Biomaterials 32(22):5304–5310CrossRefGoogle Scholar
  90. 90.
    Gao J, Zheng WT, Kong DL, Yang ZM (2011) Dual enzymes regulate the molecular self-assembly of tetra-peptide derivatives. Soft Matter 7(21):10443–10448CrossRefGoogle Scholar
  91. 91.
    Ruana L, Zhanga H, Luoa H, Liua J, Tanga F, Shi Y-K, Zhaoa X (2009) Designed amphiphilic peptide forms stable nanoweb, slowly releases encapsulated hydrophobic drug, and accelerates animal hemostasis. Proc Natl Acad Sci U S A 106(13):5105–5110CrossRefGoogle Scholar
  92. 92.
    Li J, Gao Y, Kuang Y, Shi J, Du X, Zhou J, Wang H, Yang Z, Xu B (2013) Dephosphory-lation of D-peptide derivatives to form biofunctional, supramolecular nanofibers/hydrogels and their potential applications for intracellular imaging and intratumoral chemotherapy. J Am Chem Soc 135:9907–9914CrossRefGoogle Scholar
  93. 93.
    Kuang Y, Shi J, Li J, Yuan D, Alberti KA, Xu Q, Xu B (2014) Pericellular hydrogel/nanonets inhibit cancer cells. Angew Chem Int Ed 53:8104–8107CrossRefGoogle Scholar
  94. 94.
    Ischakov R, Adler-Abramovich L, Buzhansky L, Shekhter T, Gazit E (2013) Peptide-based hydrogel nanoparticles as effective drug delivery agents. Biorg Med Chem 21:3517–3522CrossRefGoogle Scholar
  95. 95.
    Xing RR, Liu K, Jiao TF, Zhang N, Ma K, Zhang RY, Zou QL, Ma GH, Yan XH (2016) An injectable self-assembling collagen-gold hybrid hydrogel for combinatorial antitumor photothermal/photodynamic therapy. Adv Mater 28:3669–3676CrossRefGoogle Scholar
  96. 96.
    Thornton PD, Mart RJ, Webbb SJ, Ulijn RV (2008) Enzyme-responsive hydrogel particles for the controlled release of proteins: designing peptide actuators to match payload. Soft Matter 4:821–827CrossRefGoogle Scholar
  97. 97.
    Maity I, Rasale DB, Das AK (2012) Sonication induced peptide-appended bolaamphiphile hydrogels for in situ generation and catalytic activity of Pt nanoparticles. Soft Matter 8:5301–5308CrossRefGoogle Scholar
  98. 98.
    Dutta S, Shome A, Kar T, Das PK (2011) Counterion-induced modulation in the antimicrobial activity and biocompatibility of amphiphilic hydrogelators: influence of in-situ-synthesized Ag-nanoparticle on the bactericidal property. Langmuir 27:5000–50008CrossRefGoogle Scholar
  99. 99.
    Sharma KP, Harniman R, Farrugia T, Briscoe WH, Perriman AW, Mann S (2016) Dynamic behavior in enzyme-polymer surfactant hydrogel films. Adv Mater 28:1597–1602CrossRefGoogle Scholar
  100. 100.
    Yan X, Cui Y, He Q, Wang K, Li J (2008) Organogels based on self-assembly of diphenylalanine peptide and their application to immobilize quantum dots. Chem Mater 20(4):1522–1526CrossRefGoogle Scholar
  101. 101.
    Adhikari B, Nanda J, Banerjee A (2011) Pyrene-containing peptide-based fluorescent organogels: inclusion of graphene into the organogel. Chem Eur J 17:11488–11496CrossRefGoogle Scholar
  102. 102.
    Afrasiabi R, Kraatz H-B (2013) Small-peptide-based organogel kit: towards the development of multicomponent self-sorting organogels. Chem Eur J 19:15862–15871CrossRefGoogle Scholar
  103. 103.
    Sone ED, Zubarev ER, Stupp SI (2002) Semiconductor nanohelices templated by supramolecular ribbons. Angew Chem Int Ed 41:1706–1709CrossRefGoogle Scholar
  104. 104.
    Ray S, Das AK, Banerjee A (2006) Smart oligopeptide gels: in situ formation and stabilization of gold and silver nanoparticles within supramolecular organogel networks. Chem Commun 26:2816–2818CrossRefGoogle Scholar
  105. 105.
    Liu Y, Wang Y, Jin L, Chen T, Yin B (2016) MPTTF-containing tripeptide-based organogels: receptor for 2, 4, 6-trinitrophenol and multiple stimuli-responsive properties. Soft Matter 12:934–945CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Biochemical EngineeringInstitute of Process Engineering, Chinese Academy of SciencesBeijingChina
  2. 2.Center for MesoscienceInstitute of Process Engineering, Chinese Academy of SciencesBeijingChina

Personalised recommendations