Skip to main content

Biomorphic Mineralization-Mediated Self-assembly Nanomaterial and Activity Study

  • Chapter
  • First Online:
  • 808 Accesses

Abstract

In our study, “green” nanoparticle synthesis has been achieved using environmentally acceptable solvent system and eco-friendly agents. A mild, versatile, and controlled methodology was used to form biomorphic mineralization-mediated self-assembly nanonoble metal materials, and their activities were explored. The work lays the groundwork for developing biotemplated nanomaterials that can be used as building block for the creation of nanomaterials. Meanwhile, the Au and Pt nanomaterials have great application prospects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mullins M, Murphy F, Baublyte L (2013) The insurability of nanomaterial production risk. Nat Nanotechnol 8(4):222–224

    Article  Google Scholar 

  2. Ye J, Zhang H, Yang R (2010) Morphology-controlled synthesis of SnO2 nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries. Small 6(2):296–306

    Article  Google Scholar 

  3. Tajani A (2013) Substance identification of nanomaterials not key to ensuring their safe use. Nat Nanotechnol 8(5):306–307

    Article  Google Scholar 

  4. Teow Y, Valiyaveettil S (2010) Active targeting of cancer cells using folic acid-conjugated platinum nanoparticles. Nanoscale 2(12):2607

    Article  Google Scholar 

  5. Satoh N, Nakashima T, Kamikura K (2008) Quantum size effect in TiO2 nanoparticles prepared by finely controlled metal assembly on dendrimer templates. Nat Nanotechnol 3(2):106–111

    Article  Google Scholar 

  6. Knez M, Bittner AM, Boes F (2003) Biotemplate synthesis of 3-nm nickel and cobalt nanowires. Nano Lett 3(8):1079–1082

    Article  Google Scholar 

  7. Dong L, Hollis T, Connolly B et al (2007) DNA-templated semiconductor nanoparticle chains and wires. Adv Mater 19(13):1748–1751

    Article  Google Scholar 

  8. Whitesides GM (2003) The ‘right’ size in nanobiotechnology. Nat Biotechnol 21(10):1161–1165

    Article  Google Scholar 

  9. Winfree E, Liu F, Wenzler LA (1998) Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693):539–544

    Article  Google Scholar 

  10. Labean TH, Hao Y, Kopatsch J (2000) Construction, analysis, ligation, and self-assembly of dna triple crossover complexes. J Am Chem Soc 122(9):1848–1860

    Article  Google Scholar 

  11. Yan H, Park SH, Finkelstein G (2003) DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301(5641):1882–1884

    Article  Google Scholar 

  12. Rothemund PW (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440(7082):297–302

    Article  Google Scholar 

  13. Stearns LA, Chhabra R, Sharma J (2009) Template-directed nucleation and growth of inorganic nanoparticles on dna scaffolds. Angew Chem 121(45):8646–8648

    Article  Google Scholar 

  14. Chen A, Holt-Hindle P (2010) Platinum-based nanostructured materials: synthesis, properties, and applications. Chem Rev 110(6):3767–3804

    Article  Google Scholar 

  15. Peng Z, You H, Wu J (2010) Electrochemical synthesis and catalytic property of sub-10 nm platinum cubic nanoboxes. Nano Lett 10(4):1492–1496

    Article  Google Scholar 

  16. Zhang HT, Ding J, Chow GM (2008) Morphological control of synthesis and anomalous magnetic properties of 3-D branched Pt nanoparticles. Langmuir 24(2):375–378

    Article  Google Scholar 

  17. Xu J, Fu G, Tang Y, Zhou Y, Chen Y (2012) One-pot synthesis of three-dimensional platinum nanochain networks as stable and active electrocatalysts for oxygen reduction reactions. J Mater Chem 22(27):13585–13590

    Article  Google Scholar 

  18. García MA, Ruiz-González ML, Fuente GFDL (2007) Ferromagnetism in twinned pt nanoparticles obtained by laser ablation. Chem Mater 19(4):889–893

    Article  Google Scholar 

  19. Schwamborn S, Etienne M, Schuhmann W (2011) Local electrocatalytic induction of sol-gel deposition at pt nanoparticles. Electrochem Commun 13(8):759–762

    Article  Google Scholar 

  20. Li N, Gao F, Hou L (2010) DNA-templated rational assembly of BaWO4 nano pair-linear arrays. J Phys Chem C 114(39):16114–16121

    Article  Google Scholar 

  21. Górzny MŁ, Walton AS (2010) Synthesis of high-surface-area platinum nanotubes using a viral template. Adv Funct Mater 20(8):1295–1300

    Article  Google Scholar 

  22. Chiu CY, Li Y, Ruan L, Ye X, Murray CB (2011) Platinum nanocrystals selectively shaped using facet-specific peptide sequences. Nat Chem 3(5):393–399

    Article  Google Scholar 

  23. Zhang L, Li N, Gao F, Hou L, Xu Z (2012) Insulin amyloid fibrils: an excellent platform for controlled synthesis of ultrathin superlong platinum nanowires with high electrocatalytic activity. J Am Chem Soc 134(28):11326–11329

    Article  Google Scholar 

  24. Surujpaul PP, Gutierrez-Wing C, Ocampo-García B (2008) Gold nanoparticles conjugated to [tyr3]octreotide peptide. Biophys Chem 138(3):83–90

    Article  Google Scholar 

  25. Jenkins SA, Kynaston HG, Davies ND (2001) Somatostatin analogs in oncology: a look to the future. Chemotherapy 47(Suppl. 2):162–196

    Article  Google Scholar 

  26. Grimberg A (2004) Somatostatin and cancer: applying endocrinology to oncology. Cancer Biol Ther 3(8):731–733

    Article  Google Scholar 

  27. Pawlikowski M, Melenmucha G (2003) Perspectives of new potential therapeutic applications of somatostatin analogs. Neuro Endocrinol Lett 24(1–2):21–27

    Google Scholar 

  28. Manni A, Boucher AE, Demers LM (1990) Somatostatin analogues in the treatment of breast and prostate cancer. J Steroid Biochem Mol Biol 37(6):1083–1087

    Article  Google Scholar 

  29. Kouroumalis EA (2001) Octreotide for cancer of liver and biliary tree. Chemotherapy 47(Suppl 2):150–161

    Article  Google Scholar 

  30. Porcel E, Liehn S, Remita H (2010) Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology 21(8):85103

    Article  Google Scholar 

  31. Niesz K, Grass M, Somorjai GA (2005) Precise control of the Pt nanoparticle size by seeded growth using EO13PO30EO13 triblock copolymers as protective agents. Nano Lett 5(11):2238–2240

    Article  Google Scholar 

  32. Kriplani U, Kay BK (2005) Selecting peptides for use in nanoscale materials using phage-displayed combinatorial peptide libraries. Curr Opin Biotechnol 16(4):470–475

    Article  Google Scholar 

  33. Zhao X, Gao D, Gao F (2013) Self-assembled platinum nanochains based on octreotide acetate. J Nanopart Res 15(9):1918

    Google Scholar 

  34. Statham PJ (1998) Measuring performance of energy-dispersive x-ray systems. Microsc Microanal 4(6):605–615

    Article  Google Scholar 

  35. Teranishi T, Hosoe M, Tanaka T (1999) Size control of monodispersed pt nanoparticles and their 2D organization by electrophoretic deposition. J Phys Chem B 103(19):3818–3827

    Article  Google Scholar 

  36. Wang Z, Xue W, Zhao X et al (2016) Self-assembly of platinum nanochains using octreotide acetate template and their catalytic activity study. Mater Lett 170:160–162

    Article  Google Scholar 

  37. De M, Rana S, Akpinar H et al (2009) Sensing of proteins in human serum using conjugates of nanoparticles and green fluorescent protein. Nat Chem 1(6):461

    Article  Google Scholar 

  38. Nemerow GR, Cheresh DA, Wickham TJ (1994) Adenovirus entry into host cells: a role for αv integrins. Trends Cell Biol 4(2):52–55

    Article  Google Scholar 

  39. Xue W, Zhou J, Gao D et al (2015) Preparation of adenovirus-templated gold nanoshells and a study of their photothermal therapy efficacy. New J Chem 39(5):3608–3614

    Article  Google Scholar 

  40. Kramer M, Jaganathan H, Ivanisevic A (2010) Serial and parallel dip-pen nanolithography using a colloidal probe tip. J Am Chem Soc 132(13):4532–4533

    Article  Google Scholar 

  41. Housni A, Ahmed M, Liu S (2008) Monodisperse protein stabilized gold nanoparticles via a simple photochemical process. J Phys Chem C 112(32):12282–12290

    Article  Google Scholar 

  42. Jiao T, Ying W, Guo W (2012) Synthesis and photocatalytic property of gold nanoparticles by using a series of bolaform schiff base amphiphiles. Mater Res Bull 47(12):4203–4209

    Article  Google Scholar 

  43. Ba H, Rodríguez-Fernández J, Stefani FD (2010) Immobilization of gold nanoparticles on living cell membranes upon controlled lipid binding. Nano Lett 10(8):3006–3012

    Article  Google Scholar 

  44. Ali ME, Hashim U (2012) Mustafa S (2012) Gold nanoparticle sensor for the visual detection of pork adulteration in meatball formulation. J Nanomater 2:343–349

    Google Scholar 

  45. Nam J, Won N, Jin H (2009) PH-induced aggregation of gold nanoparticles for photothermal cancer therapy. J Am Chem Soc 131(38):13639–13645

    Article  Google Scholar 

  46. Matsuda K, Yamaguchi H, Sakano T (2008) Conductance photoswitching of diarylethene-gold nanoparticle network induced by photochromic reaction. J Phys ChemC 112(43):17005–17010

    Google Scholar 

  47. Seol SK, Kim D, Jung S (2013) One-step synthesis of peg-coated gold nanoparticles by rapid microwave heating. J Nanomater 2013(7):87–89

    Google Scholar 

  48. Yamamoto M, Kashiwagi Y, Sakata T (2005) Synthesis and morphology of star-shaped gold nanoplates protected by poly(n-vinyl-2-pyrrolidone). Chem Mater 17(22):5391–5393

    Article  Google Scholar 

  49. Djalali R, Chen YF (2003) Au nanocrystal growth on nanotubes controlled by conformations and charges of sequenced peptide templates. J Am Chem Soc 125(19):5873–5879

    Article  Google Scholar 

  50. Griffin F, Ongaro A, Fitzmaurice D (2004) DNA-templated assembly of nanoscale wires and protein-functionalized nanogap contacts. Analyst 129(12):1171–1175

    Article  Google Scholar 

  51. Zhang J, Liu Y, Ke Y, Yan H (2006) Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA nanogrids on a surface. Nano Lett 6(2):248–251

    Article  Google Scholar 

  52. Aljabali AAA, Lomonossoff GP, Evans DJ (2011) CPMV-polyelectrolyte-templated gold nanoparticles. Biomacromolecules 12(7):2723–2728

    Article  Google Scholar 

  53. Forbes LM, Goodwin AP (2010) Tunable size and shape control of platinum nanocrystals from a single peptide sequence. Chem Mater 22(24):6524–6528

    Article  Google Scholar 

  54. Iwase Y, Maitani Y (2011) Octreotide-targeted liposomes loaded with cpt-11 enhanced cytotoxicity for the treatment of medullary thyroid carcinoma. Mol Pharm 8(2):330–337

    Article  Google Scholar 

  55. Lau DT, Sharkey JW, Petryk L (1994) Effect of current magnitude and drug concentration on iontophoretic delivery of octreotide acetate (sandostatin) in the rabbit. Pharm Res 11(12):1742–1746

    Article  Google Scholar 

  56. Zhou J, Fu ZZ, Gao DW (2013) Fabrication of gold nanochains with octreotide acetate template. J Nanomater 2013(5):7111–7116

    Google Scholar 

  57. Tan YN, Lee JY, Wang DI (2010) Uncovering the design rules for peptide synthesis of metal nanoparticles. J Am Chem Soc 132(16):5677–5686

    Article  Google Scholar 

  58. Toroz D, Corni S (2014) Peptide synthesis of gold nanoparticles: the early steps of gold reduction investigated by density functional theory. Nano Lett 11(3):1313–1318

    Article  Google Scholar 

  59. Tan YN, Lee JY, Wang DIC (2008) Aspartic acid synthesis of crystalline gold nanoplates, nanoribbons, and nanowires in aqueous solutions. J Phys Chem C 112(14):5463–5470

    Article  Google Scholar 

  60. Niemeyer CM, Simon U (2005) DNA-based assembly of metal nanoparticles. Eur J Inorg Chem 2005(18):3641–3655

    Article  Google Scholar 

  61. Radloff C, Vaia RA, Brunton J (2005) Metal nanoshell assembly on a virus bioscaffold. Nano Lett 5(6):1187

    Article  Google Scholar 

  62. Kemal L, Jiang XC, Wong K (2008) Experiment and theoretical study of poly (vinyl pyrrolidone)-controlled gold nanoparticles. J Phys Chem C 112(40):15656–15664

    Article  Google Scholar 

  63. Wang G, Sun W (2006) Optical limiting of gold nanoparticle aggregates induced by electrolytes. J Phys Chem B 110(42):20901–20905

    Article  Google Scholar 

  64. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4(1):26–49

    Article  Google Scholar 

  65. Kim J, Rheem Y, Yoo B (2010) Peptide-mediated shape- and size-tunable synthesis of gold nanostructures. Acta Biomater 6(7):2681–2689

    Article  Google Scholar 

  66. Majimel J, Bacinello D, Durand E (2008) Synthesis of hybrid gold-gold sulfide colloidal particles. Langmuir ACS J Surf Colloids 24(8):4289–4294

    Article  Google Scholar 

  67. Shukla R, Bansal V, Chaudhary M (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21(23):10644–10654

    Article  Google Scholar 

  68. Yang YK, Lee S, Tae J (2009) A gold (III) ion-selective fluorescent probe and its application to bioimagings. Org Lett 11(24):5610–5613

    Article  Google Scholar 

  69. Nyarko E, Hara T, Grab DJ (2004) In vitro toxicity of palladium(ii) and gold(iii) porphyrins and their aqueous metal ion counterparts on trypanosoma brucei brucei, growth. Chem Biol Interact 148(1–2):19–25

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a research grant from the National Natural Science Foundation (No. 21476190), Hebei Province Key Basic Research Project, Hebei Province Science Fund (No. 142777118D), and Qinhuangdao Science and Technology Research and Development Project (No. 201402B029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawei Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, D., Yin, T., Bian, K., Zhu, R. (2018). Biomorphic Mineralization-Mediated Self-assembly Nanomaterial and Activity Study. In: Li, B., Jiao, T. (eds) Nano/Micro-Structured Materials for Energy and Biomedical Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-7787-6_4

Download citation

Publish with us

Policies and ethics