Recent Advances in Electrospun Poly(ε-caprolactone)-Based Materials and Their Biomedical Applications

  • Lin Wang
  • Reem A. Ghubayra
  • Adam J.-P. Bauer
  • Mir Hadi R. Kondelaji
  • Zachary B. Grim
  • Bingbing Li
Chapter

Abstract

Fiber-based materials have been used in a wide range of applications, from textiles to biofunctional scaffolds, and research on these materials continues to yield new and exciting results. In the past decades, electrospinning has been shown to be a particularly versatile and adaptable method of fiber formation. A great number of variables in the electrospinning process can be finely tuned to alter the resultant properties of the electrospun materials. Among all published research on electrospinning, poly(ε-caprolactone) (PCL)-based electrospun fibers have been most intensively studied due to the low cost, good processability, great biocompatibility, and biodegradability of PCL. This chapter highlights the current advances in electrospun PCL-based materials by categorizing these materials into following six groups: (1) PCL-natural biopolymer-based material, (2) PCL blended with other biodegradable synthetic polymers, (3) PCL blended with other synthetic polymers, (4) PCL fibers functionalization utilizing bioactive molecules, (5) PCL-based composites with inorganics or other nanofillers, and (6) PCL fiber with post-electrospinning decoration. We also summarize the fabrication techniques, experimental parameters, as well as the structure, morphology, and physicochemical properties of these fiber products. This chapter provides a comprehensive review of fabricating various PCL-based electrospun materials and their potential applications as biodegradable and biocompatible materials, such as biomedical implants, tissue scaffolds, drug carriers, gene delivery vehicles.

Keywords

Electrospinning Poly(ε-caprolactone) fiber Nanomaterial Polymer blend Nanocomposite Biomedical material Fibrous scaffold Tissue engineering Drug carrier Gene delivery 

Abbreviation of Solvents

AA

Acetic acid

DCM

Dichloromethane

DMAc

N, N-dimethylacetamide

DMF

N, N-imethylformamide

DMK

Acetone

EtOH

Ethanol

FA

Formic acid

HFP

1,1,1,3,3,3-hexafluor-2-propanol

MC

Methyl chloride

MEK

Methyl ethyl ketone

MeOH

Methanol

TCM

Chloroform

TEF

2,2,2-trifluoroethanol

TFA

Trifluoroacetic acid

THF

Tetrahydrofuran

Notes

Acknowledgements

Authors would like to thank Central Michigan University for Provost Discretionary Grant (cc26151). Lin Wang would like to thank Beijing University of Technology for the Joint Training Scholarship Program (2016).

References

  1. 1.
    Luo CJ, Stoyanov SD, Stride E, Pelan E, Edirisinghe M (2012) Electrospinning versus fibre production methods: from specifics to technological convergence. Chem Soc Rev 41(13):4708–4735CrossRefGoogle Scholar
  2. 2.
    Beachley V, Wen X (2010) Polymer nanofibrous structures: fabrication, biofunctionalization, and cell interactions. Prog Polym Sci 35(7):868–892CrossRefGoogle Scholar
  3. 3.
    Reneker DH, Yarin AL, Zussman E, Xu H (2007) Electrospinning of nanofibers from polymer solutions and melts. Adv Appl Mech 41(43–195):345–346Google Scholar
  4. 4.
    Baji A, Mai YW, Wong SC, Abtahi M, Chen P (2010) Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Compos Sci Technol 70(5):703–718CrossRefGoogle Scholar
  5. 5.
    Schiffman JD, Schauer CL (2008) A review: electrospinning of biopolymer nanofibers and their applications. Polym Rev 48(2):317–352CrossRefGoogle Scholar
  6. 6.
    Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170CrossRefGoogle Scholar
  7. 7.
    Thompson CJ, Chase GG, Yarin AL, Reneker DH (2007) Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 48(23):6913–6922CrossRefGoogle Scholar
  8. 8.
    Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253CrossRefGoogle Scholar
  9. 9.
    Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347CrossRefGoogle Scholar
  10. 10.
    Wang X, Zhao H, Turng LS, Li Q (2013) Crystalline morphology of electrospun poly(ε-caprolactone) (PCL) nanofibers. Ind Eng Chem Res 52(13):4939–4949CrossRefGoogle Scholar
  11. 11.
    Wong SC, Baji A, Leng S (2008) Effect of fiber diameter on tensile properties of electrospun poly(ε-caprolactone). Polymer 49(21):4713–4722CrossRefGoogle Scholar
  12. 12.
    Richard-Lacroix M, Pellerin C (2013) Molecular orientation in electrospun fibers: from mats to single fibers. Macromolecules 46(24):9473–9493CrossRefGoogle Scholar
  13. 13.
    Jeon HJ, Lee H, Kim GH (2015) Fabrication and characterization of nanoscale-roughened PCL/collagen micro/nanofibers treated with plasma for tissue regeneration. J Mat Chem B 3(16):3279–3287CrossRefGoogle Scholar
  14. 14.
    Zhang YZ, Venugopal J, Huang ZM, Lim CT, Ramakrishna S (2005) Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromol 6(5):2583–2589CrossRefGoogle Scholar
  15. 15.
    Hackett JM, Dang TT, Tsai EC, Cao X (2010) Electrospun biocomposite polycaprolactone/collagen tubes as scaffolds for neural stem cell differentiation. Materials 3(6):3714–3728CrossRefGoogle Scholar
  16. 16.
    San Choi J, Lee SJ, Christ GJ, Atala A, Yoo JJ (2008) The influence of electrospun aligned poly (ɛ-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials 29(19):2899–2906CrossRefGoogle Scholar
  17. 17.
    Zeugolis DI, Khew ST, Yew ES, Ekaputra AK, Tong YW, Yung LYL, Hutmacher DW, Sheppard C, Raghunath M (2008) Electro-spinning of pure collagen nano-fibres-just an expensive way to make gelatin? Biomaterials 29(15):2293–2305CrossRefGoogle Scholar
  18. 18.
    Feng B, Tu H, Yuan H, Peng H, Zhang Y (2012) Acetic-acid-mediated miscibility toward electrospinning homogeneous composite nanofibers of GT/PCL. Biomacromol 13(12):3917–3925CrossRefGoogle Scholar
  19. 19.
    Zheng R, Duan H, Xue J, Liu Y, Feng B, Zhao S, Zhu Y, Liu Y, He A, Zhang W, Liu W, Cao Y, Zhou G (2014) The influence of Gelatin/PCL ratio and 3-D construct shape of electrospun membranes on cartilage regeneration. Biomaterials 35(1):152–164CrossRefGoogle Scholar
  20. 20.
    Alvarez-Perez MA, Guarino V, Cirillo V, Ambrosio L (2010) Influence of gelatin cues in PCL electrospun membranes on nerve outgrowth. Biomacromol 11(9):2238–2246CrossRefGoogle Scholar
  21. 21.
    Xue J, He M, Liu H, Niu Y, Crawford A, Coates PD, Chen D, Shi R, Zhang L (2014) Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes. Biomaterials 35(34):9395–9405CrossRefGoogle Scholar
  22. 22.
    Zhu X, Ni S, Xia T, Yao Q, Li H, Wang B, Wang J, Li X, Su W (2015) Anti-neoplastic cytotoxicity of SN-38-loaded PCL/Gelatin electrospun composite nanofiber scaffolds against human glioblastoma cells in vitro. J Pharm Sci 104(12):4345–4354CrossRefGoogle Scholar
  23. 23.
    Nagiah N, Johnson R, Anderson R, Elliott W, Tan W (2015) Highly compliant vascular grafts with gelatin-sheathed coaxially structured nanofibers. Langmuir 31(47):12993–13002CrossRefGoogle Scholar
  24. 24.
    Kim MS, Jun I, Shin YM, Jang W, Kim SI, Shin H (2010) The development of genipin-crosslinked poly (caprolactone)(PCL)/gelatin nanofibers for tissue engineering applications. Macromol Biosci 10(1):91–100CrossRefGoogle Scholar
  25. 25.
    Ahmed F, Saleemi S, Khatri Z, Abro MI, Kim IS (2015) Co-electrospun poly (ɛ-caprolactone)/cellulose nanofibers-fabrication and characterization. Carbohyd Polym 115:388–393CrossRefGoogle Scholar
  26. 26.
    Zoppe JO, Peresin MS, Habibi Y, Venditti RA, Rojas OJ (2009) Reinforcing poly (ε-caprolactone) nanofibers with cellulose nanocrystals. ACS Appl Mater Interfaces 1(9):1996–2004CrossRefGoogle Scholar
  27. 27.
    Joshi MK, Tiwari AP, Pant HR, Shrestha BK, Kim HJ, Park CH, Kim CS (2015) In situ generation of cellulose nanocrystals in polycaprolactone nanofibers: effects on crystallinity, mechanical strength, biocompatibility, and biomimetic mineralization. ACS Appl Mater Interfaces 7(35):19672–19683CrossRefGoogle Scholar
  28. 28.
    Yang X, Chen X, Wang H (2009) Acceleration of osteogenic differentiation of preosteoblastic cells by chitosan containing nanofibrous scaffolds. Biomacromol 10(10):2772–2778CrossRefGoogle Scholar
  29. 29.
    Van der Schueren L, Steyaert I, De Schoenmaker B, De Clerck K (2012) Polycaprolactone/chitosan blend nanofibres electrospun from an acetic acid/formic acid solvent system. Carbohyd Polym 88(4):1221–1226CrossRefGoogle Scholar
  30. 30.
    Van der Schueren L, De Meyer T, Steyaert I, Ceylan Ö, Hemelsoet K, Van Speybroeck V, De Clerck K (2013) Polycaprolactone and polycaprolactone/chitosan nanofibres functionalised with the pH-sensitive dye Nitrazine Yellow. Carbohyd Polym 91(1):284–293CrossRefGoogle Scholar
  31. 31.
    Shalumon KT, Anulekha KH, Girish CM, Prasanth R, Nair SV, Jayakumar R (2010) Single step electrospinning of chitosan/poly (caprolactone) nanofibers using formic acid/acetone solvent mixture. Carbohyd Polym 80(2):413–419CrossRefGoogle Scholar
  32. 32.
    Bhattarai N, Li Z, Gunn J, Leung M, Cooper A, Edmondson D, Veiseh O, Chen MH, Zhang Y, Ellenbogen RG, Zhang M (2009) Natural-synthetic polyblend nanofibers for biomedical applications. Adv Mater 21(27):2792–2797CrossRefGoogle Scholar
  33. 33.
    Cooper A, Bhattarai N, Zhang M (2011) Fabrication and cellular compatibility of aligned chitosan-PCL fibers for nerve tissue regeneration. Carbohyd Polym 85(1):149–156CrossRefGoogle Scholar
  34. 34.
    Chen SH, Chen CH, Shalumon KT, Chen JP (2014) Preparation and characterization of antiadhesion barrier film from hyaluronic acid-grafted electrospun poly (caprolactone) nanofibrous membranes for prevention of flexor tendon postoperative peritendinous adhesion. Int J Nanomed 9:4079CrossRefGoogle Scholar
  35. 35.
    Chen CH, Chen SH, Shalumon KT, Chen JP (2015) Dual functional core-sheath electrospun hyaluronic acid/polycaprolactone nanofibrous membranes embedded with silver nanoparticles for prevention of peritendinous adhesion. Acta Biomater 26:225–235CrossRefGoogle Scholar
  36. 36.
    Kim MS, Kim G (2014) Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds. Carbohyd Polym 114:213–221CrossRefGoogle Scholar
  37. 37.
    Toskas G, Heinemann S, Heinemann C, Cherif C, Hund RD, Roussis V, Hanke T (2012) Ulvan and ulvan/chitosan polyelectrolyte nanofibrous membranes as a potential substrate material for the cultivation of osteoblasts. Carbohyd Polym 89(3):997–1002CrossRefGoogle Scholar
  38. 38.
    Kikionis S, Ioannou E, Toskas G, Roussis V (2015) Electrospun biocomposite nanofibers of ulvan/PCL and ulvan/PEO. J Appl Polym Sci 132(26)Google Scholar
  39. 39.
    Wu D, Zhang Y, Zhang M, Yu W (2009) Selective localization of multiwalled carbon nanotubes in poly (ε-caprolactone)/polylactide blend. Biomacromol 10(2):417–424CrossRefGoogle Scholar
  40. 40.
    Liao GY, Chen L, Zeng XY, Zhou XP, Xie XL, Peng EJ, Ye ZQ, Mai YW (2011) Electrospun poly (L-lactide)/poly (ε-caprolactone) blend fibers and their cellular response to adipose-derived stem cells. J Appl Polym Sci 120(4):2154–2165CrossRefGoogle Scholar
  41. 41.
    Chen L, Bai Y, Liao G, Peng E, Wu B, Wang Y, Zeng X, Xie X (2013) Electrospun poly (L-lactide)/poly (ε-caprolactone) blend nanofibrous scaffold: characterization and biocompatibility with human adipose-derived stem cells. PLoS ONE 8(8):e71265CrossRefGoogle Scholar
  42. 42.
    Zhao X, Luo J, Fang C, Xiong J (2015) Investigation of polylactide/poly (ε-caprolactone)/multi-walled carbon nanotubes electrospun nanofibers with surface texture. RSC Adv 5(120):99179–99187CrossRefGoogle Scholar
  43. 43.
    Liu YJ, Jiang HL, Li Y, Zhu KJ (2008) Control of dimensional stability and degradation rate in electrospun composite scaffolds composed of poly (d, l-lactide-co-glycolide) and poly (ε-caprolactone). Chin J Polym Sci 26(01):63–71CrossRefGoogle Scholar
  44. 44.
    Hiep NT, Lee BT (2010) Electro-spinning of PLGA/PCL blends for tissue engineering and their biocompatibility. J Mater Sci - Mater Med 21(6):1969–1978CrossRefGoogle Scholar
  45. 45.
    Franco RA, Nguyen TH, Lee BT (2011) Preparation and characterization of electrospun PCL/PLGA membranes and chitosan/gelatin hydrogels for skin bioengineering applications. J Mater Sci - Mater Med 22(10):2207CrossRefGoogle Scholar
  46. 46.
    Subramanian A, Krishnan UM, Sethuraman S (2012) Fabrication, characterization and in vitro evaluation of aligned PLGA-PCL nanofibers for neural regeneration. Ann Biomed Eng 40(10):2098–2110CrossRefGoogle Scholar
  47. 47.
    Raspa A, Marchini A, Pugliese R, Mauri M, Maleki M, Vasita R, Gelain F (2016) A biocompatibility study of new nanofibrous scaffolds for nervous system regeneration. Nanoscale 8(1):253–265CrossRefGoogle Scholar
  48. 48.
    Ding Y, Roether JA, Boccaccini AR, Schubert DW (2014) Fabrication of electrospun poly (3-hydroxybutyrate)/poly (ε-caprolactone)/silica hybrid fibermats with and without calcium addition. Eur Polymer J 55:222–234CrossRefGoogle Scholar
  49. 49.
    K-hasuwan PR, Pavasant P, Supaphol P (2011) Effect of the surface topography of electrospun poly (ε-caprolactone)/poly (3-hydroxybuterate-co-3-hydroxyvalerate) fibrous substrates on cultured bone cell behavior. Langmuir 27(17):10938–10946CrossRefGoogle Scholar
  50. 50.
    Díez-Pascual AM, Díez-Vicente AL (2016) Electrospun fibers of chitosan-grafted polycaprolactone/poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) blends. J Mater Chem B 4(4):600–612CrossRefGoogle Scholar
  51. 51.
    Han J, Branford-White CJ, Zhu LM (2010) Preparation of poly (ε-caprolactone)/poly (trimethylene carbonate) blend nanofibers by electrospinning. Carbohyd Polym 79(1):214–218CrossRefGoogle Scholar
  52. 52.
    Han J, Chen TX, Branford-White CJ, Zhu LM (2009) Electrospun shikonin-loaded PCL/PTMC composite fiber mats with potential biomedical applications. Int J Pharm 382(1):215–221CrossRefGoogle Scholar
  53. 53.
    Schindler C, Williams BL, Patel HN, Thomas V, Dean DR (2013) Electrospun polycaprolactone/polyglyconate blends: miscibility, mechanical behavior, and degradation. Polymer 54(25):6824–6833CrossRefGoogle Scholar
  54. 54.
    Salehi S, Bahners T, Gutmann JS, Gao SL, Mäder E, Fuchsluger TA (2014) Characterization of structural, mechanical and nano-mechanical properties of electrospun PGS/PCL fibers. RSC Adv 4(33):16951–16957CrossRefGoogle Scholar
  55. 55.
    Wang Y, Deng J, Fan R, Tong A, Zhang X, Zhou L, Zhang Y, Xu J, Guo G (2015) Novel nanoscale topography on poly (propylene carbonate)/poly (ε-caprolactone) electrospun nanofibers modifies osteogenic capacity of ADCs. RSC Adv 5(101):82834–82844CrossRefGoogle Scholar
  56. 56.
    Lancuški A, Fort S, Bossard F (2012) Electrospun azido-PCL nanofibers for enhanced surface functionalization by click chemistry. ACS Appl Mater Interfaces 4(12):6499–6504CrossRefGoogle Scholar
  57. 57.
    Chen CH, Chen SH, Shalumon KT, Chen JP (2015) Prevention of peritendinous adhesions with electrospun polyethylene glycol/polycaprolactone nanofibrous membranes. Colloids Surf, B 133:221–230CrossRefGoogle Scholar
  58. 58.
    Rubert M, Li YF, Dehli J, Taskin MB, Besenbacher F, Chen M (2014) Dexamethasone encapsulated coaxial electrospun PCL/PEO hollow microfibers for inflammation regulation. Rsc Adv 4(93):51537–51543CrossRefGoogle Scholar
  59. 59.
    Rubert M, Dehli J, Li YF, Taskin MB, Xu R, Besenbacher F, Chen M (2014) Electrospun PCL/PEO coaxial fibers for basic fibroblast growth factor delivery. J MaterChem B 2(48):8538–8546Google Scholar
  60. 60.
    Li YF, Rubert M, Aslan H, Yu Y, Howard KA, Dong M, Besenbacher F, Chen M (2014) Ultraporous interweaving electrospun microfibers from PCL-PEO binary blends and their inflammatory responses. Nanoscale 6(6):3392–3402CrossRefGoogle Scholar
  61. 61.
    Li YF, Gregersen H, Nygaard JV, Cheng W, Yu Y, Huang Y, Dong M, Besenbacher F, Chen M (2015) Ultraporous nanofeatured PCL-PEO microfibrous scaffolds enhance cell infiltration, colonization and myofibroblastic differentiation. Nanoscale 7(36):14989–14995CrossRefGoogle Scholar
  62. 62.
    Li YF, Rubert M, Yu Y, Besenbacher F, Chen M (2015) Delivery of dexamethasone from electrospun PCL-PEO binary fibers and their effects on inflammation regulation. RSC Adv 5(43):34166–34172CrossRefGoogle Scholar
  63. 63.
    Srikar R, Yarin AL, Megaridis CM, Bazilevsky AV, Kelley E (2008) Desorption-limited mechanism of release from polymer nanofibers. Langmuir 24(3):965–974CrossRefGoogle Scholar
  64. 64.
    Son SR, Linh NTB, Yang HM, Lee BT (2013) In vitro and in vivo evaluation of electrospun PCL/PMMA fibrous scaffolds for bone regeneration. Sci Technol Adv Mater 14(1):015009CrossRefGoogle Scholar
  65. 65.
    Croisier F, Sibret P, Dupont-Gillain CC, Genet MJ, Detrembleur C, Jérôme C (2015) Chitosan-coated electrospun nanofibers with antibacterial activity. J Mater Chem B 3(17):3508–3517CrossRefGoogle Scholar
  66. 66.
    Chen M, Dong M, Havelund R, Regina VR, Meyer RL, Besenbacher F, Kingshott P (2010) Thermo-responsive core-sheath electrospun nanofibers from poly (N-isopropylacrylamide)/polycaprolactone blends. Chem Mater 22(14):4214–4221CrossRefGoogle Scholar
  67. 67.
    Kim JH, Choung PH, Kim IY, Lim KT, Son HM, Choung YH, Cho CS, Chung JH (2009) Electrospun nanofibers composed of poly (ε-caprolactone) and polyethylenimine for tissue engineering applications. Mater Sci Eng, C 29(5):1725–1731CrossRefGoogle Scholar
  68. 68.
    Guo F, Wang N, Wang L, Hou L, Ma L, Liu J, Chen Y, Fan B, Zhao Y (2015) An electrospun strong PCL/PU composite vascular graft with mechanical anisotropy and cyclic stability. J Mater Chem A 3(9):4782–4787CrossRefGoogle Scholar
  69. 69.
    Ghag AK, Gough JE, Downes S (2014) The osteoblast and osteoclast responses to phosphonic acid containing poly (ε-caprolactone) electrospun scaffolds. Biomater Sci 2(2):233–241CrossRefGoogle Scholar
  70. 70.
    Song J, Kahveci D, Chen M, Guo Z, Xie E, Xu X, Besenbacher F, Dong M (2012) Enhanced catalytic activity of lipase encapsulated in PCL nanofibers. Langmuir 28(14):6157–6162CrossRefGoogle Scholar
  71. 71.
    Chutipakdeevong J, Ruktanonchai U, Supaphol P (2015) Hybrid biomimetic electrospun fibrous mats derived from poly (ε‐caprolactone) and silk fibroin protein for wound dressing application. J Appl Polym Sci 132(11).  https://doi.org/10.1002/app.41653
  72. 72.
    Zhang YZ, Wang X, Feng Y, Li J, Lim CT, Ramakrishna S (2006) Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly (ε-caprolactone) nanofibers for sustained release. Biomacromol 7(4):1049–1057CrossRefGoogle Scholar
  73. 73.
    Gandhi M, Srikar R, Yarin AL, Megaridis CM, Gemeinhart RA (2009) Mechanistic examination of protein release from polymer nanofibers. Mol Pharm 6(2):641–647CrossRefGoogle Scholar
  74. 74.
    Valmikinathan CM, Defroda S, Yu X (2009) Polycaprolactone and bovine serum albumin based nanofibers for controlled release of nerve growth factor. Biomacromol 10(5):1084–1089CrossRefGoogle Scholar
  75. 75.
    Seyednejad H, Ji W, Yang F, van Nostrum CF, Vermonden T, van den Beucken JJ, Dhert WJA, Hennink WE, Jansen JA (2012) Coaxially electrospun scaffolds based on hydroxyl-functionalized poly (ε-caprolactone) and loaded with VEGF for tissue engineering applications. Biomacromol 13(11):3650–3660CrossRefGoogle Scholar
  76. 76.
    Baranowska-Korczyc A, Warowicka A, Jasiurkowska-Delaporte M, Grześkowiak B, Jarek M, Maciejewska BM, Jurga-Stopa J, Jurga S (2016) Antimicrobial electrospun poly (ε-caprolactone) scaffolds for gingival fibroblast growth. RSC Adv 6(24):19647–19656CrossRefGoogle Scholar
  77. 77.
    Hsu KH, Fang SP, Lin CL, Liao YS, Yoon YK, Chauhan A (2016) Hybrid electrospun polycaprolactone mats consisting of nanofibers and microbeads for extended release of dexamethasone. Pharm Res 33(6):1509–1516CrossRefGoogle Scholar
  78. 78.
    Singh NK, Singh SK, Dash D, Purkayastha BPD, Roy JK, Maiti P (2012) Nanostructure controlled anti-cancer drug delivery using poly (ε-caprolactone) based nanohybrids. J Mater Chem 22(34):17853–17863CrossRefGoogle Scholar
  79. 79.
    Hassan MI, Sultana N, Hamdan S (2014) Bioactivity assessment of poly (ε-caprolactone)/hydroxyapatite electrospun fibers for bone tissue engineering application. J Nanomater.  https://doi.org/10.1155/2014/573238 Google Scholar
  80. 80.
    Wutticharoenmongkol P, Pavasant P, Supaphol P (2007) Osteoblastic phenotype expression of MC3T3-E1 cultured on electrospun polycaprolactone fiber mats filled with hydroxyapatite nanoparticles. Biomacromol 8(8):2602–2610CrossRefGoogle Scholar
  81. 81.
    Chen JP, Chang YS (2011) Preparation and characterization of composite nanofibers of polycaprolactone and nanohydroxyapatite for osteogenic differentiation of mesenchymal stem cells. Colloids Surf, B 86(1):169–175CrossRefGoogle Scholar
  82. 82.
    Gao X, Song J, Ji P, Zhang X, Li X, Xu X, Wang M, Zhang S, Deng Y, Deng F, Wei S (2016) Polydopamine-templated hydroxyapatite reinforced polycaprolactone composite nanofibers with enhanced cytocompatibility and osteogenesis for bone tissue engineering. ACS Appl Mater Interfaces 8(5):3499–3515CrossRefGoogle Scholar
  83. 83.
    Oonishi H, Hench LL, Wilson J, Sugihara F, Tsuji E, Matsuura M, Kin S, Yamamoto T, Mizokawa S (2000) Quantitative comparison of bone growth behavior in granules of Bioglass, A-W glass-ceramic, and hydroxyapatite. J Biomed Mater Res 51(1):37–46CrossRefGoogle Scholar
  84. 84.
    Sachot N, Castano O, Planell JA, Engel E (2015) Optimization of blend parameters for the fabrication of polycaprolactone-silicon based ormoglass nanofibers by electrospinning. J Biomed Mater Res B Appl Biomater 103(6):1287–1293CrossRefGoogle Scholar
  85. 85.
    Allo BA, Rizkalla AS, Mequanint K (2010) Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol−gel process. Langmuir 26(23):18340–18348CrossRefGoogle Scholar
  86. 86.
    Castaño O, Sachot N, Xuriguera E, Engel E, Planell JA, Park JH, Jin GZ, Kim TH, Kim JH, Kim HW (2014) Angiogenesis in bone regeneration: tailored calcium release in hybrid fibrous scaffolds. ACS Appl Mater Interfaces 6(10):7512–7522CrossRefGoogle Scholar
  87. 87.
    El-Fiqi A, Kim JH, Kim HW (2015) Osteoinductive fibrous scaffolds of biopolymer/mesoporous bioactive glass nanocarriers with excellent bioactivity and long-term delivery of osteogenic drug. ACS Appl Mater Interfaces 7(2):1140–1152CrossRefGoogle Scholar
  88. 88.
    Münchow EA, Pankajakshan D, Albuquerque MT, Kamocki K, Piva E, Gregory RL, Bottino MC (2016) Synthesis and characterization of CaO-loaded electrospun matrices for bone tissue engineering. Clin Oral Invest 20(8):1921–1933CrossRefGoogle Scholar
  89. 89.
    Cao Z, Wang D, Lyu L, Gong Y, Li Y (2016) Fabrication and characterization of PCL/CaCO3 electrospun composite membrane for bone repair. RSC Advances 6(13):10641–10649CrossRefGoogle Scholar
  90. 90.
    Rajzer I, Menaszek E, Kwiatkowski R, Planell JA, Castano O (2014) Electrospun gelatin/poly (ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering. Mater Sci Eng, C 44:183–190CrossRefGoogle Scholar
  91. 91.
    Kim YB, Kim G (2012) Rapid-prototyped collagen scaffolds reinforced with PCL/β-TCP nanofibres to obtain high cell seeding efficiency and enhanced mechanical properties for bone tissue regeneration. J Mater Chem 22(33):16880–16889CrossRefGoogle Scholar
  92. 92.
    Wang J, Zhu Y, Bawa HK, Ng G, Wu Y, Libera M, van der Mei HC, Busscher HJ, Yu X (2010) Oxygen-generating nanofiber cell scaffolds with antimicrobial properties. ACS Appl Mater Interfaces 3(1):67–73CrossRefGoogle Scholar
  93. 93.
    Augustine R, Dominic EA, Reju I, Kaimal B, Kalarikkal N, Thomas S (2014) Electrospun polycaprolactone membranes incorporated with ZnO nanoparticles as skin substitutes with enhanced fibroblast proliferation and wound healing. RSC Advances 4(47):24777–24785CrossRefGoogle Scholar
  94. 94.
    Romeo V, Gorrasi G, Vittoria V, Chronakis IS (2007) Encapsulation and exfoliation of inorganic lamellar fillers into polycaprolactone by electrospinning. Biomacromol 8(10):3147–3152CrossRefGoogle Scholar
  95. 95.
    Elias E, Chandran N, Souza FG, Thomas S (2016) Segmental dynamics, morphology and thermomechanical properties of electrospun poly (ε-caprolactone) nanofibers in the presence of an interacting filler. RSC Advances 6(26):21376–21386CrossRefGoogle Scholar
  96. 96.
    Meng ZX, Zheng W, Li L, Zheng YF (2010) Fabrication and characterization of three-dimensional nanofiber membrance of PCL-MWCNTs by electrospinning. Mater Sci Eng, C 30(7):1014–1021CrossRefGoogle Scholar
  97. 97.
    He X, Tan L, Wu X, Yan C, Chen D, Meng X, Tang F (2012) Electrospun quantum dots/polymer composite porous fibers for turn-on fluorescent detection of lactate dehydrogenase. J Mater Chem 22(35):18471–18478CrossRefGoogle Scholar
  98. 98.
    Wu J, Mather PT (2009) POSS polymers: physical properties and biomaterials applications. J Macromol Sci, Part C: Polym Rev 49:25–63Google Scholar
  99. 99.
    Fan J, Liu J, Bauer AJ, Uthaisar C, Zeng T, Wang C, Zhang M, Fahs G, Esker A, Moore RB, Gao F, Li B (2014) Electrospun hybrid fibers with substantial filler contents formed through kinetically arrested phase separation in liquid jet. RSC Adv 4(53):27683–27686CrossRefGoogle Scholar
  100. 100.
    Grim ZB, Bauer AJ, Li L, Li B (2017) Molecular architecture and enhanced thermal stability of electrospun poly (ε‐caprolactone)/aminopropyl isobutyl polyhedral oligomeric silsesquioxane hybrid fibers. Macromol Mater Eng 302(5).  https://doi.org/10.1002/mame.201600452
  101. 101.
    Bauer AJ, Zeng T, Liu J, Uthaisar C, Li B (2014) The enhanced encapsulation capacity of polyhedral oligomeric silsesquioxane-based copolymers for the fabrication of electrospun core/shell fibers. Macromol Rapid Commun 35(7):715–720CrossRefGoogle Scholar
  102. 102.
    Bauer AJ, Wu Y, Li B (2016) Electrospun poly (ε-caprolactone)/polyhedral oligomeric silsesquioxane-based copolymer blends: evolution of fiber internal structures. Macromol Biosci 16(5):705–716CrossRefGoogle Scholar
  103. 103.
    Kim KO, Kim BS, Lee KH, Park YH, Kim IS (2013) Osteoblastic cells culture on electrospun poly (ε-caprolacton) scaffolds incorporating amphiphilic PEG-POSS telechelic. J Mater Sci - Mater Med 24(8):2029–2036CrossRefGoogle Scholar
  104. 104.
    Chen M, Besenbacher F (2011) Light-driven wettability changes on a photoresponsive electrospun mat. ACS Nano 5(2):1549–1555CrossRefGoogle Scholar
  105. 105.
    Jacobs T, Morent R, De Geyter N, Dubruel P, Leys C (2012) Plasma surface modification of biomedical polymers: influence on cell-material interaction. Plasma Chem Plasma Process 32(5):1039–1073CrossRefGoogle Scholar
  106. 106.
    Lee JY, Chung J, Chung WJ, Kim G (2016) Fabrication and in vitro biocompatibilities of fibrous biocomposites consisting of PCL and M13 bacteriophage-conjugated alginate for bone tissue engineering. J Mater Chem B 4(4):656–665CrossRefGoogle Scholar
  107. 107.
    Zander NE, Orlicki JA, Rawlett AM, Beebe TP Jr (2012) Quantification of protein incorporated into electrospun polycaprolactone tissue engineering scaffolds. ACS Appl Mater Interfaces 4(4):2074–2081CrossRefGoogle Scholar
  108. 108.
    Jeon H, Lee J, Lee H, Kim GH (2016) Nanostructured surface of electrospun PCL/dECM fibres treated with oxygen plasma for tissue engineering. RSC Adv 6(39):32887–32896CrossRefGoogle Scholar
  109. 109.
    Bhattacharjee P, Naskar D, Kim HW, Maiti TK, Bhattacharya D, Kundu SC (2015) Non-mulberry silk fibroin grafted PCL nanofibrous scaffold: promising ECM for bone tissue engineering. Eur Polymer J 71:490–509CrossRefGoogle Scholar
  110. 110.
    Bhattacharjee P, Naskar D, Maiti TK, Bhattacharya D, Kundu SC (2016) Non-mulberry silk fibroin grafted poly (ε-caprolactone) nanofibrous scaffolds mineralized by electrodeposition: an optimal delivery system for growth factors to enhance bone regeneration. RSC Adv 6(32):26835–26855CrossRefGoogle Scholar
  111. 111.
    Mattanavee W, Suwantong O, Puthong S, Bunaprasert T, Hoven VP, Supaphol P (2009) Immobilization of biomolecules on the surface of electrospun polycaprolactone fibrous scaffolds for tissue engineering. ACS Appl Mater Interfaces 1(5):1076–1085CrossRefGoogle Scholar
  112. 112.
    Monteiro N, Martins A, Pires R, Faria S, Fonseca NA, Moreira JN, Reis RL, Neves NM (2014) Immobilization of bioactive factor-loaded liposomes on the surface of electrospun nanofibers targeting tissue engineering. Biomater Sci 2(9):1195–1209CrossRefGoogle Scholar
  113. 113.
    Monteiro N, Ribeiro D, Martins A, Faria S, Fonseca NA, Moreira JN, Reis RL, Neves NM (2014) Instructive nanofibrous scaffold comprising runt-related transcription factor 2 gene delivery for bone tissue engineering. ACS Nano 8(8):8082–8094CrossRefGoogle Scholar
  114. 114.
    Chen X, Dong B, Wang B, Shah R, Li CY (2010) Crystalline block copolymer decorated, hierarchically ordered polymer nanofibers. Macromolecules 43(23):9918–9927CrossRefGoogle Scholar
  115. 115.
    Jing X, Mi HY, Wang XC, Peng XF, Turng LS (2015) Shish-kebab-structured poly (ε-caprolactone) nanofibers hierarchically decorated with chitosan-poly (ε-caprolactone) copolymers for bone tissue engineering. ACS Appl Mater Interfaces 7(12):6955–6965CrossRefGoogle Scholar
  116. 116.
    Liu J, Bauer AJ, Li B (2014) Solvent vapor annealing: an efficient approach for inscribing secondary nanostructures onto electrospun fibers. Macromol Rapid Commun 35(17):1503–1508CrossRefGoogle Scholar
  117. 117.
    Tang W, Chase DB, Rabolt JF (2013) Immobilization of gold nanorods onto electrospun polycaprolactone fibers via polyelectrolyte decoration-a 3D SERS substrate. Anal Chem 85(22):10702–10709CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Lin Wang
    • 1
    • 2
  • Reem A. Ghubayra
    • 1
  • Adam J.-P. Bauer
    • 1
  • Mir Hadi R. Kondelaji
    • 1
  • Zachary B. Grim
    • 1
  • Bingbing Li
    • 1
  1. 1.Department of Chemistry and BiochemistryCentral Michigan UniversityMount PleasantUSA
  2. 2.Beijing Key Laboratory for Green Catalysis and Separation, College of Environmental and Energy EngineeringBeijing University of TechnologyBeijingPeople’s Republic of China

Personalised recommendations