Polymer Nanodielectrics: Current Accomplishments and Future Challenges for Electric Energy Storage

Chapter

Abstract

In response to the need for high energy density and low-loss film capacitors in various electrical and power applications, polymer nanocomposite dielectrics or nanodielectrics have attracted substantial attention in recent years. The idea is to combine the high dielectric constant property from inorganic nanoparticles and the high breakdown strength and low-loss properties from the polymer matrices. Both theoretical and experimental studies have carried out to testify this idea. In this chapter, we review both theoretical and experimental achievements and fundamental understanding on this topic. In particular, we focus on the dielectric loss mechanisms in polymer nanodielectrics. It is found that high permittivity contrast between the nanofillers and the polymer matrices tends to decrease the dielectric breakdown strength because of nonuniform electric field distribution. High conductivity contrast between ceramic nanofillers and the polymer matrix will induce internal electronic conduction loss. For polymer/metallic nanoparticle dielectrics, field electron emission from metallic nanoparticles under a high field tends to increase the electronic conduction and thus decrease the dielectric breakdown strength. In the future, research should focus on mitigating these dielectric loss mechanisms in order to achieve viable polymer nanodielectrics for film capacitor applications.

Keywords

Polymer nanodielectrics Ferroelectric nanoparticles Barium titanate Metallic nanoparticles Dielectric constant Dielectric breakdown strength Energy density 

Notes

Acknowledgements

This work was supported by National Science Foundation Science and Technology Center, Center for Layered Polymeric Systems (DMR-0423914).

References

  1. 1.
    Sarjeant WJ, Zirnheld J, MacDougall FW (1998) Capacitors. IEEE Trans Plasm Sci 26:1368–1392CrossRefGoogle Scholar
  2. 2.
    Sarjeant WJ, Clelland IW, Price RA (2001) Capacitive components for power electronics. P IEEE 89(6):846–855CrossRefGoogle Scholar
  3. 3.
    Zhu L (2014) Exploring strategies for high dielectric constant and low loss polymer dielectrics. J Phys Chem Lett 5(21):3677–3687CrossRefGoogle Scholar
  4. 4.
    Chen Q, Shen Y, Zhang S, Zhang QM (2015) Polymer-based dielectrics with high energy storage density. Annu Rev Mater Res 45:433–458CrossRefGoogle Scholar
  5. 5.
    Liu P, Yen R, Bloembergen N (1978) Dielectric-breakdown threshold, two-photon absorption, and other optical damage mechanisms in diamond. IEEE J Quantum Electron 14(8):574–576CrossRefGoogle Scholar
  6. 6.
    Bass SJ, Nathan WI, Cole RH, Meighan RM (1964) Dielectric properties of alkyl amides. II. Liquid dielectric constant and loss. J Phys Chem 68(3):509–515CrossRefGoogle Scholar
  7. 7.
    Fukasawa T, Sato T, Watanabe J, Hama Y, Kunz W, Buchner R (2005) Relation between dielectric and low-frequency Raman spectra of hydrogen-bond liquids. Phys Rev Lett 95(19):197802CrossRefGoogle Scholar
  8. 8.
    Herbert JM (1985) Ceramic dielectrics and capacitors. Electrocomponent science monographs, vol. 6. Gordon and Breach, New YorkGoogle Scholar
  9. 9.
    Deeley PM (1938) Electrolytic capacitors. The Cornell-Dubilier Electric Corp., South Plainfield, NJGoogle Scholar
  10. 10.
    Kao K-C (2004) Dielectric phenomena in solids: with emphasis on physical concepts of electronic processes. Elsevier Academic Press, BostonGoogle Scholar
  11. 11.
    Wang CC, Pilania G, Boggs SA, Kumar S, Breneman C, Ramprasad R (2014) Computational strategies for polymer dielectrics design. Polymer 55(4):979–988CrossRefGoogle Scholar
  12. 12.
    Millefiori S, Alparone A, Milleflori A, Vanella A (2008) Electronic and vibrational polarizabilities of the twenty naturally occurring amino acids. Biophys Chem 132(2–3):139–147CrossRefGoogle Scholar
  13. 13.
    Zhang QS, Cagin T, Goddard WA (2006) The ferroelectric and cubic phases in BaTiO3 ferroelectrics are also antiferroelectric. Proc Natl Acad Sci USA 103(40):14695–14700CrossRefGoogle Scholar
  14. 14.
    Lunkenheimer P, Fichtl R, Ebbinghaus SG, Loidl A (2004) Nonintrinsic origin of the colossal dielectric constants in CaCu3Ti4O12. Phys Rev B 70(17):172102CrossRefGoogle Scholar
  15. 15.
    Fang C, Chen LY, Zhou DX (2013) Influence of domain on grain size effects of the dielectric properties of BaTiO3 nanoceramics and nanoparticles. Phys B 409:83–86CrossRefGoogle Scholar
  16. 16.
    Karasawa N, Goddard WA III (1992) Force fields, structures, and properties of poly(vinylidene fluoride) crystals. Macromolecules 25(26):7268–7281CrossRefGoogle Scholar
  17. 17.
    Yang L, Ho J, Allahyarov E, Mu R, Zhu L (2015) Semicrystalline structure dielectric property relationship and electrical conduction in a biaxially oriented poly(vinylidene fluoride) film under high electric fields and high temperatures. ACS Appl Mater Interfaces 7(36):19894–19905CrossRefGoogle Scholar
  18. 18.
    Bockris JOM, Reddy AKN, Gamboa-Aldeco M (1998) Modern electrochemistry. 2nd edn. Plenum Press, New YorkGoogle Scholar
  19. 19.
    Kim SH, Hong K, Xie W, Lee KH, Zhang SP, Lodge TP, Frisbie CD (2013) Electrolyte-gated transistors for organic and printed electronics. Adv Mater 25(13):1822–1846CrossRefGoogle Scholar
  20. 20.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854CrossRefGoogle Scholar
  21. 21.
    Vanturnhout J, Hoeneveld WJ, Adamse JWC, Vanrossen LM (1981) Electret filters for high-efficiency and high-flow air cleaning. IEEE Trans Ind Appl 17(2):240–248CrossRefGoogle Scholar
  22. 22.
    Fan FR, Tian ZQ, Wang ZL (2012) Flexible triboelectric generator. Nano Energy 1(2):328–334CrossRefGoogle Scholar
  23. 23.
    Van Suchtelen J (1972) Product properties: a new application of composite materials. Philips Res Rep 27:28–37Google Scholar
  24. 24.
    Newnham RE, Skinner DP, Cross LE (1978) Connectivity and piezoelectric-pyroelectric composites. Mater Res Bull 13(5):525–536CrossRefGoogle Scholar
  25. 25.
    Lichtenecker K (1929) Mischkorpertheori als lichkeitswahrscheis problem. Phys Z 30:805–809Google Scholar
  26. 26.
    Levy O, Stroud D (1997) Maxwell Garnett theory for mixtures of anisotropic inclusions: application to conducting polymers. Phys Rev B 56(13):8035–8046CrossRefGoogle Scholar
  27. 27.
    Tuncer E (2013) Dielectric mixtures-importance and theoretical approaches. IEEE Electr Insul M 29(6):49–58CrossRefGoogle Scholar
  28. 28.
    Tuncer E, Gubanski SM, Nettelblad B (2001) Dielectric relaxation in dielectric mixtures: application of the finite element method and its comparison with dielectric mixture formulas. J Appl Phys 89(12):8092–8100CrossRefGoogle Scholar
  29. 29.
    Gao L, Gu JZ (2002) Effective dielectric constant of a two-component material with shape distribution. J Phys D Appl Phys 35(3):267–271CrossRefGoogle Scholar
  30. 30.
    Bruggeman DAG (1935) Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. I. Dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen. Ann Phys 416(7):636–664Google Scholar
  31. 31.
    Sen PN, Scala C, Cohen MH (1981) A self-similar model for sedimentary-rocks with application to the dielectric-constant of fused glass-beads. Geophysics 46(5):781–795CrossRefGoogle Scholar
  32. 32.
    Hanai T (1960) Theory of the dielectric dispersion due to the interfacial polarization and its application to emulsions. Kolloid Z 171:23–31CrossRefGoogle Scholar
  33. 33.
    Hanai T (1961) Dielectric theory on the interfacial polarization for two phase mixtures. Bull Inst Chem Res 39(6):341–367Google Scholar
  34. 34.
    Yamada T, Ueda T, Kitayama T (1982) Piezoelectricity of a high-content lead zirconate titanate polymer composite. J Appl Phys 53(6):4328–4332CrossRefGoogle Scholar
  35. 35.
    Paniagua SA, Kim Y, Henry K, Kumar R, Perry JW, Marder SR (2014) Surface-initiated polymerization from barium titanate nanoparticles for hybrid dielectric capacitors. ACS Appl Mater Interfaces 6(5):3477–3482CrossRefGoogle Scholar
  36. 36.
    Allahyarov E, Loewen H, Zhu L (2016) Dipole correlation effects on the local field and the effective dielectric constant in composite dielectrics containing high-k inclusions. Phys Chem Chem Phys 18(28):19103–19117CrossRefGoogle Scholar
  37. 37.
    Liu C, Shen LC (1993) Dielectric-constant of two-component, two-dimensional mixtures in terms of Bergman-Milton simple poles. J Appl Phys 73(4):1897–1903CrossRefGoogle Scholar
  38. 38.
    Sareni B, Krahenbuhl L, Beroual A, Nicolas A, Brosseau C (1997) A boundary integral equation method for the calculation of the effective permittivity of periodic composites. IEEE Trans Magn 33(2):1580–1583CrossRefGoogle Scholar
  39. 39.
    Allahyarov E, Loewen H, Zhu L (2015) A simulation study of the electrostriction effects in dielectric elastomer composites containing polarizable inclusions with different spatial distributions. Phys Chem Chem Phys 17(48):32479–32497CrossRefGoogle Scholar
  40. 40.
    Cheng H, Torquato S (1997) Electric-field fluctuations in random dielectric composites. Phys Rev B 56(13):8060–8068CrossRefGoogle Scholar
  41. 41.
    Lewis TJ (2005) Interfaces: nanometric dielectrics. J Phys D Appl Phys 38(2):202–212CrossRefGoogle Scholar
  42. 42.
    Dang Z-M, Yuan J-K, Yao S-H, Liao R-J (2013) Flexible nanodielectric materials with high permittivity for power energy storage. Adv Mater 25(44):6334–6365CrossRefGoogle Scholar
  43. 43.
    Tanaka T, Kozako M, Fuse N, Ohki Y (2005) Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans Dielectr Electr Insul 12(4):669–681CrossRefGoogle Scholar
  44. 44.
    Goswami AK (1969) Dielectric properties of unsintered barium titanate. J Appl Phys 40(2):619–624CrossRefGoogle Scholar
  45. 45.
    Hsiang HI, Yen FS (1993) Dielectric-properties and ferroelectric domain of BaTiO3 powders. Jpn J Appl Phys 1 32(11A):5029–5035Google Scholar
  46. 46.
    Beier CW, Cuevas MA, Brutchey RL (2010) Effect of surface modification on the dielectric properties of BaTiO3 nanocrystals. Langmuir 26(7):5067–5071CrossRefGoogle Scholar
  47. 47.
    Wada S, Yasuno H, Hoshina T, Nam SM, Kakemoto H, Tsurumi T (2003) Preparation of nm-sized barium titanate fine particles and their powder dielectric properties. Jpn J Appl Phys 1 42 (9B):6188–6195Google Scholar
  48. 48.
    Siddabattuni S, Schuman TP, Petrovsky V, Dogan F (2013) Impedance analysis of dielectric nanoparticles enabled via a self-assembled monolayer. J Am Ceram Soc 96(5):1490–1496CrossRefGoogle Scholar
  49. 49.
    Adam J, Lehnert T, Klein G, McMeeking RM (2014) Ferroelectric properties of composites containing BaTiO3 nanoparticles of various sizes. Nanotechnology 25(6):065704CrossRefGoogle Scholar
  50. 50.
    Zhang G, Brannum D, Dong D, Tang L, Allahyarov E, Tang S, Kodweis K, Lee J-K, Zhu L (2016) Interfacial polarization-induced loss mechanisms in polypropylene/BaTiO3 nanocomposite dielectrics. Chem Mater 28(13):4646–4660CrossRefGoogle Scholar
  51. 51.
    Siddabattuni S, Schuman TP, Dogan F (2013) Dielectric properties of polymer-particle nanocomposites influenced by electronic nature of filler surfaces. ACS Appl Mater Interfaces 5(6):1917–1927CrossRefGoogle Scholar
  52. 52.
    Guo HZ, Mudryk Y, Ahmad MI, Pang XC, Zhao L, Akinc M, Pecharsky VK, Bowler N, Lin ZQ, Tan X (2012) Structure evolution and dielectric behavior of polystyrene-capped barium titanate nanoparticles. J Mater Chem 22(45):23944–23951Google Scholar
  53. 53.
    Petrovsky V, Petrovsky T, Kamlapurkar S, Dogan F (2008) Characterization of dielectric particles by impedance Spectroscopy (Part 1). J Am Ceram Soc 91(6):1814–1816CrossRefGoogle Scholar
  54. 54.
    Petrovsky V, Manohar A, Dogan F (2006) Dielectric constant of particles determined by impedance spectroscopy. J Appl Phys 100(1):014102CrossRefGoogle Scholar
  55. 55.
    Beier CW, Cuevas MA, Brutchey RL (2010) Low-temperature synthesis of solid-solution BaxSr1-xTiO3 nanocrystals. J Mater Chem 20(24):5074–5079CrossRefGoogle Scholar
  56. 56.
    Balasubramanian B, Kraemer KL, Reding NA, Skomski R, Ducharme S, Sellmyer DJ (2010) Synthesis of monodisperse TiO2-paraffin core-shell nanoparticles for improved dielectric properties. ACS Nano 4(4):1893–1900CrossRefGoogle Scholar
  57. 57.
    Li J, Seok SI, Chu B, Dogan F, Zhang Q, Wang Q (2009) Nanocomposites of ferroelectric polymers with TiO2 nanoparticles exhibiting significantly enhanced electrical energy density. Adv Mater 21(2):217–221CrossRefGoogle Scholar
  58. 58.
    Beynon JDE, Bloodworth GG, Mcleod IM (1973) Electrical properties of anodically grown silicon dioxide films. Solid-State Electron 16(3):309–314CrossRefGoogle Scholar
  59. 59.
    Higashi GS, Fleming CG (1989) Sequential surface chemical-reaction limited growth of high-quality Al2O3 dielectrics. Appl Phys Lett 55(19):1963–1965CrossRefGoogle Scholar
  60. 60.
    Thompson DP, Dickins AM, Thorp JS (1992) The dielectric-properties of zirconia. J Mater Sci 27(8):2267–2271CrossRefGoogle Scholar
  61. 61.
    Sethi G, Olszta M, Li J, Sloppy J, Horn MW, Dickey EC, Lanagan MT (2007) Structure and dielectric properties of amorphous tantalum pentoxide thin film capacitors. In: 2007 annual report conference on electrical insulation and dielectric phenomena, pp 815–818Google Scholar
  62. 62.
    Kukli K, Ihanus J, Ritala M, Leskela M (1996) Tailoring the dielectric properties of HfO2-Ta2O5 nanolaminates. Appl Phys Lett 68(26):3737–3739CrossRefGoogle Scholar
  63. 63.
    Foster CM, Bai GR, Csencsits R, Vetrone J, Jammy R, Wills LA, Carr E, Amano J (1997) Single-crystal Pb(ZrxTi1-x)O3 thin films prepared by metal-organic chemical vapor deposition: systematic compositional variation of electronic and optical properties. J Appl Phys 81(5):2349–2357CrossRefGoogle Scholar
  64. 64.
    Fang L, Shen MR, Yang J, Li ZY (2006) Reduced dielectric loss and leakage current in CaCu3Ti4O12/SiO2/CaCu3Ti4O12 multilayered films. Solid State Commun 137(7):381–386CrossRefGoogle Scholar
  65. 65.
    Yazici A, Unus N, Altindal A, Salih B, Bekaroglu O (2012) Phthalocyanine with a giant dielectric constant. Dalton Trans 41(13):3773–3779CrossRefGoogle Scholar
  66. 66.
    Pang XC, He YJ, Jiang BB, Iocozzia J, Zhao L, Guo HZ, Liu J, Akinc M, Bowler N, Tan XL, Lin ZQ (2013) Block copolymer/ferroelectric nanoparticle nanocomposites. Nanoscale 5(18):8695–8702CrossRefGoogle Scholar
  67. 67.
    Beier CW, Sanders JM, Brutchey RL (2013) Improved breakdown strength and energy density in thin-film polyimide nanocomposites with small barium strontium titanate nanocrystal fillers. J Phys Chem C 117(14):6958–6965CrossRefGoogle Scholar
  68. 68.
    Bai Y, Cheng ZY, Bharti V, Xu HS, Zhang QM (2000) High-dielectric-constant ceramic-powder polymer composites. Appl Phys Lett 76(25):3804–3806CrossRefGoogle Scholar
  69. 69.
    Olszowy M, Markiewicz E, Pawlaczyk C, Nogas-Cwikiel E, Plonska M (2007) Dynamic dielectric response of PLZT-P(VDF/TFE) nanocomposites. J Phys: Conf Ser 79(1):012035Google Scholar
  70. 70.
    Dang ZM, Lin YH, Nan CW (2003) Novel ferroelectric polymer composites with high dielectric constants. Adv Mater 15(19):1625–1629CrossRefGoogle Scholar
  71. 71.
    Fredin LA, Li Z, Lanagan MT, Ratner MA, Marks TJ (2013) Substantial recoverable energy storage in percolative metallic aluminum-polypropylene nanocomposites. Adv Funct Mater 23(28):3560–3569CrossRefGoogle Scholar
  72. 72.
    Kofod G, Risse S, Stoyanov H, McCarthy DN, Sokolov S, Kraehnert R (2011) Broad-spectrum enhancement of polymer composite dielectric constant at ultra low volume fractions of silica-supported copper nanoparticles. ACS Nano 5(3):1623–1629CrossRefGoogle Scholar
  73. 73.
    Lu JX, Moon KS, Xu JW, Wong CP (2006) Synthesis and dielectric properties of novel high-k polymer composites containing in-situ formed silver nanoparticles for embedded capacitor applications. J Mater Chem 16(16):1543–1548CrossRefGoogle Scholar
  74. 74.
    Yousefi N, Sun XY, Lin XY, Shen X, Jia JJ, Zhang B, Tang BZ, Chan MS, Kim JK (2014) Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv Mater 26(31):5480–5487CrossRefGoogle Scholar
  75. 75.
    Dang ZM, Wang L, Yin Y, Zhang Q, Lei QQ (2007) Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv Mater 19(6):852–857CrossRefGoogle Scholar
  76. 76.
    He F, Lau S, Chan HL, Fan JT (2009) High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates. Adv Mater 21(6):710–715CrossRefGoogle Scholar
  77. 77.
    Huang C, Zhang QM, Su J (2003) High-dielectric-constant all-polymer percolative composites. Appl Phys Lett 82(20):3502–3504CrossRefGoogle Scholar
  78. 78.
    Zhang QM, Li H, Poh M, Xia F, Cheng ZY, Xu H, Huang C (2002) An all-organic composite actuator material with a high dielectric constant. Nature 419(6904):284–287CrossRefGoogle Scholar
  79. 79.
    He LX, Tjong SC (2012) Universality of Zener tunneling in carbon/polymer composites. Synth Met 161(23–24):2647–2650CrossRefGoogle Scholar
  80. 80.
    Elallam T, Akinnifesi J, Despax B, Thegiam H, Saidi M, Bendaoud M (1994) Hydrostatic-pressure effect on switching phenomena in copper-containing plasma thin-films. J Appl Phys 76(6):3869–3874CrossRefGoogle Scholar
  81. 81.
    Laurent C, Kay E, Souag N (1988) Dielectric-breakdown of polymer-films containing metal-clusters. J Appl Phys 64(1):336–343CrossRefGoogle Scholar
  82. 82.
    Calame JP (2006) Finite difference simulations of permittivity and electric field statistics in ceramic-polymer composites for capacitor applications. J Appl Phys 99(8):084101CrossRefGoogle Scholar
  83. 83.
    An L, Boggs SA, Callame JP (2008) Energy storage in polymer films with high dielectric constant fillers. IEEE Electr Insul M 24(3):5–10CrossRefGoogle Scholar
  84. 84.
    Eberle G, Schmidt H, Eisenmenger W (1993) Influence of poling conditions on the gas emission of PVDF. IEEE 1993 annual report, pp 263–268Google Scholar
  85. 85.
    McCarthy DN, Stoyanov H, Rychkov D, Ragusch H, Melzer M, Kofod G (2012) Increased permittivity nanocomposite dielectrics by controlled interfacial interactions. Compos Sci Technol 72(6):731–736CrossRefGoogle Scholar
  86. 86.
    Vo HT, Shi FG (2002) Towards model-based engineering of optoelectronic packaging materials: dielectric constant modeling. Microelectron J 33(5–6):409–415CrossRefGoogle Scholar
  87. 87.
    Murugaraj P, Mainwaring D, Mora-Huertas N (2005) Dielectric enhancement in polymer-nanoparticle composites through interphase polarizability. J Appl Phys 98(5):054304CrossRefGoogle Scholar
  88. 88.
    Park JM, Lee HY, Kim JJ, Park ET, Chung YK (2008) Dielectric properties of Ni-coated BaTiO3-PMMA composite. IEEE T Ultrason Ferr 55(5):1038–1042CrossRefGoogle Scholar
  89. 89.
    Rahimabady M, Mirshekarloo MS, Yao K, Lu L (2013) Dielectric behaviors and high energy storage density of nanocomposites with core-shell BaTiO3@TiO2 in poly(vinylidene fluoride-hexafluoropropylene). Phys Chem Chem Phys 15(38):16242–16248CrossRefGoogle Scholar
  90. 90.
    Wang J, Guan F, Cui L, Pan J, Wang Q, Zhu L (2014) Achieving high electric energy storage in a polymer nanocomposite at low filling ratios using a highly polarizable phthalocyanine interphase. J Polym Sci Part B: Polym Phys 52(24):1669–1680CrossRefGoogle Scholar
  91. 91.
    Dissado LA, Fothergill JC (1992) Electrical degradation and breakdown in polymers. IEE materials and devices series 9. P. Peregrinus, LondonGoogle Scholar
  92. 92.
    Kim P, Jones SC, Hotchkiss PJ, Haddock JN, Kippelen B, Marder SR, Perry JW (2007) Phosphonic acid-modified barium titanate polymer nanocomposites with high permittivity and dielectric strength. Adv Mater 19(7):1001–1005CrossRefGoogle Scholar
  93. 93.
    Dang ZM, Wang HY, Xu HP (2006) Influence of silane coupling agent on morphology and dielectric property in BaTiO3/polyvinylidene fluoride composites. Appl Phys Lett 89(11):112902CrossRefGoogle Scholar
  94. 94.
    Zhou T, Zha JW, Cui RY, Fan BH, Yuan JK, Dang ZM (2011) Improving dielectric properties of BaTiO3/ferroelectric polymer composites by employing surface hydroxylated BaTiO3 nanoparticles. ACS Appl Mater Interfaces 3(7):2184–2188CrossRefGoogle Scholar
  95. 95.
    Luo H, Zhang D, Jiang C, Yuan X, Chen C, Zhou KC (2015) Improved dielectric properties and energy storage density of poly(vinylidene fluoride-co-hexafluoropropylene) nanocomposite with hydantoin epoxy resin coated BaTiO3. ACS Appl Mater Interfaces 7(15):8061–8069CrossRefGoogle Scholar
  96. 96.
    Tang S, Fox TL, Lo TY, Horton JM, Ho RM, Zhao B, Stewart PL, Zhu L (2015) Environmentally responsive self-assembly of mixed poly(tert-butyl acrylate)-polystyrene brush-grafted silica nanoparticles in selective polymer matrices. Soft Matter 11(27):5501–5512CrossRefGoogle Scholar
  97. 97.
    Maliakal A, Katz H, Cotts PM, Subramoney S, Mirau P (2005) Inorganic oxide core, polymer shell nanocomposite as a high k gate dielectric for flexible electronics applications. J Am Chem Soc 127(42):14655–14662CrossRefGoogle Scholar
  98. 98.
    Tchoul MN, Fillery SP, Koerner H, Drummy LF, Oyerokun FT, Mirau PA, Durstock MF, Vaia RA (2010) Assemblies of titanium dioxide-polystyrene hybrid nanoparticles for dielectric applications. Chem Mater 22(5):1749–1759CrossRefGoogle Scholar
  99. 99.
    Huang XY, Jiang PK (2015) Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Adv Mater 27(3):546–554CrossRefGoogle Scholar
  100. 100.
    Qiao YL, Islam MS, Wang L, Yan Y, Zhang JY, Benicewicz BC, Ploehn HJ, Tang CB (2014) Thiophene polymer-grafted barium titanate nanoparticles toward nanodielectric composites. Chem Mater 26(18):5319–5326CrossRefGoogle Scholar
  101. 101.
    Rungta A, Natarajan B, Neely T, Dukes D, Schadler LS, Benicewicz BC (2012) Grafting bimodal polymer brushes on nanoparticles using controlled radical polymerization. Macromolecules 45(23):9303–9311CrossRefGoogle Scholar
  102. 102.
    Grabowski CA, Koerner H, Meth JS, Dang A, Hui CM, Matyjaszewski K, Bockstaller MR, Durstock MF, Vaia RA (2014) Performance of dielectric nanocomposites: matrix-free, hairy nanoparticle assemblies and amorphous polymer-nanoparticle blends. ACS Appl Mater Interfaces 6(23):21500–21509CrossRefGoogle Scholar
  103. 103.
    Jiang BB, Pang XC, Li B, Lin ZQ (2015) Organic-inorganic nanocomposites via placing monodisperse ferroelectric nanocrystals in direct and permanent contact with ferroelectric polymers. J Am Chem Soc 137(36):11760–11767CrossRefGoogle Scholar
  104. 104.
    Li JY, Zhang L, Ducharme S (2007) Electric energy density of dielectric nanocomposites. Appl Phys Lett 90(13):132901CrossRefGoogle Scholar
  105. 105.
    Smith RC, Hui L, Nelson JK, Schadler LS (2009) Interfacial charge behavior in nanodielectrics. IEEE Conf Electr Insul Dielectr Phenom: 650–653Google Scholar
  106. 106.
    Fillery SP, Koerner H, Drummy L, Dunkerley E, Durstock MF, Schmidt DF, Vaia RA (2012) Nanolaminates: increasing dielectric breakdown strength of composites. ACS Appl Mater Interfaces 4(3):1388–1396CrossRefGoogle Scholar
  107. 107.
    Li Q, Zhang GZ, Liu FH, Han K, Gadinski MR, Xiong CX, Wang Q (2015) Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets. Energ Environ Sci 8(3):922–931CrossRefGoogle Scholar
  108. 108.
    Mackey M, Schuele DE, Zhu L, Flandin L, Wolak MA, Shirk JS, Hiltner A, Baer E (2012) Reduction of dielectric hysteresis in multilayered films via nanoconfinement. Macromolecules 45(4):1954–1962CrossRefGoogle Scholar
  109. 109.
    Mackey M, Schuele DE, Zhu L, Baer E (2012) Layer confinement effect on charge migration in polycarbonate/poly(vinylidene fluorid-co-hexafluoropropylene) multilayered films. J Appl Phys 111(11):113702CrossRefGoogle Scholar
  110. 110.
    Tseng JK, Tang S, Zhou Z, Mackey M, Carr JM, Mu R, Flandin L, Schuele DE, Baer E, Zhu L (2014) Interfacial polarization and layer thickness effect on electrical insulation in multilayered polysulfone/poly(vinylidene fluoride) films. Polymer 55(1):8–14CrossRefGoogle Scholar
  111. 111.
    Yin K, Zhou Z, Schuele DE, Wolak M, Zhu L, Baer E (2016) effects of interphase modification and biaxial orientation on dielectric properties of poly(ethylene terephthalate)/poly(vinylidene fluoride-co-hexafluoropropylene) multilayer films. ACS Appl Mater Interfaces 8(21):13555–13566CrossRefGoogle Scholar
  112. 112.
    Li J, Claude J, Norena-Franco LE, Seok SI, Wang Q (2008) Electrical energy storage in ferroelectric polymer nanocomposites containing surface-functionalized BaTiO3 nanoparticles. Chem Mater 20(20):6304–6306CrossRefGoogle Scholar
  113. 113.
    Li J, Khanchaitit P, Han K, Wang Q (2010) New route toward high-energy-density nanocomposites based on chain-end functionalized ferroelectric polymers. Chem Mater 22(18):5350–5357CrossRefGoogle Scholar
  114. 114.
    Guo N, DiBenedetto SA, Tewari P, Lanagan MT, Ratner MA, Marks TJ (2010) Nanoparticle, size, shape, and interfacial effects on leakage current density, permittivity, and breakdown strength of metal oxide-polyolefin nanocomposites: experiment and theory. Chem Mater 22(4):1567–1578CrossRefGoogle Scholar
  115. 115.
    Shen Y, Lin YH, Li M, Nan CW (2007) High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer. Adv Mater 19(10):1418–1422CrossRefGoogle Scholar
  116. 116.
    Tang H, Sodano HA (2013) Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires. Nano Lett 13(4):1373–1379CrossRefGoogle Scholar
  117. 117.
    Tang H, Lin YR, Sodano HA (2013) Synthesis of high aspect ratio BaTiO3 nanowires for high energy density nanocomposite capacitors. Adv Energy Mater 3(4):451–456CrossRefGoogle Scholar
  118. 118.
    Tang H, Zhou Z, Bowland CC, Sodano HA (2015) Synthesis of calcium copper titanate (CaCu3Ti4O12) nanowires with insulating SiO2 barrier for low loss high dielectric constant nanocomposites. Nano Energy 17:302–307CrossRefGoogle Scholar
  119. 119.
    Tang H, Lin YR, Sodano HA (2012) Enhanced energy storage in nanocomposite capacitors through aligned PZT nanowires by uniaxial strain assembly. Adv Energy Mater 2(4):469–476CrossRefGoogle Scholar
  120. 120.
    Tang HX, Sodano HA (2013) High energy density nanocomposite capacitors using non-ferroelectric nanowires. Appl Phys Lett 102(6):063901CrossRefGoogle Scholar
  121. 121.
    Wang GY, Huang XY, Jiang PK (2015) Tailoring dielectric properties and energy density of ferroelectric polymer nanocomposites by high-k nanowires. ACS Appl Mater Interfaces 7(32):18017–18027CrossRefGoogle Scholar
  122. 122.
    Lin X, Hu PH, Jia ZY, Gao SM (2016) Enhanced electric displacement induces large energy density in polymer nanocomposites containing core-shell structured BaTiO3@TiO2 nanofibers. J Mater Chem A 4(6):2314–2320CrossRefGoogle Scholar
  123. 123.
    Wang CC, Song JF, Bao HM, Shen QD, Yang CZ (2008) Enhancement of electrical properties of ferroelectric polymers by polyaniline nanofibers with controllable conductivities. Adv Funct Mater 18(8):1299–1306CrossRefGoogle Scholar
  124. 124.
    Tomer V, Polizos G, Randall CA, Manias E (2011) Polyethylene nanocomposite dielectrics: implications of nanofiller orientation on high field properties and energy storage. J Appl Phys 109(7):074113CrossRefGoogle Scholar
  125. 125.
    Li Q, Chen L, Gadinski MR, Zhang SH, Zhang GZ, Li HY, Haque A, Chen LQ, Jackson T, Wang Q (2015) Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523(7562):576–579CrossRefGoogle Scholar
  126. 126.
    Li Q, Han K, Gadinski MR, Zhang GZ, Wang Q (2014) High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv Mater 26(36):6244–6249CrossRefGoogle Scholar
  127. 127.
    Yang K, Huang XY, He JL, Jiang PK (2015) Strawberry-like core-shell Ag@polydopamine@BaTiO3 hybrid nanoparticles for high-k polymer nanocomposites with high energy density and low dielectric loss. Adv Mater Interfaces 2(17):1500361CrossRefGoogle Scholar
  128. 128.
    Zhang X, Shen Y, Zhang QH, Gu L, Hu YH, Du JW, Lin YH, Nan CW (2015) Ultrahigh energy density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic-scale interface engineering. Adv Mater 27(5):819–824CrossRefGoogle Scholar
  129. 129.
    Zhang X, Shen Y, Xu B, Zhang QH, Gu L, Jiang JY, Ma J, Lin YH, Nan CW (2016) Giant energy density and improved discharge efficiency of solution-processed polymer nanocomposites for dielectric energy storage. Adv Mater 28(10):2055–2061CrossRefGoogle Scholar
  130. 130.
    Hu PH, Shen Y, Guan YH, Zhang XH, Lin YH, Zhang QM, Nan CW (2014) Topological-structure modulated polymer nanocomposites exhibiting highly enhanced dielectric strength and energy density. Adv Funct Mater 24(21):3172–3178CrossRefGoogle Scholar
  131. 131.
    Wang YF, Cui J, Yuan QB, Niu YJ, Bai YY, Wang H (2015) Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) Nanocomposites. Adv Mater 27(42):6658–6663CrossRefGoogle Scholar
  132. 132.
    Shen Y, Hu YH, Chen WW, Wang JJ, Guan YH, Du JW, Zhang X, Ma J, Li M, Lin YH, Chen LQ, Nan CW (2015) Modulation of topological structure induces ultrahigh energy density of graphene/Ba0.6Sr0.4TiO3 nanofiber/polymer nanocomposites. Nano Energy 18:176–186CrossRefGoogle Scholar
  133. 133.
    Qi L, Lee BI, Chen SH, Samuels WD, Exarhos GJ (2005) High-dielectric-constant silver-epoxy composites as embedded dielectrics. Adv Mater 17(14):1777–1781CrossRefGoogle Scholar
  134. 134.
    Feng QQ, Dang ZM, Li N, Cao XL (2003) Preparation and dielectric property of Ag-PVA nano-composite. Mat Sci Eng B-Solid 99(1–3):325–328CrossRefGoogle Scholar
  135. 135.
    Fredin LA, Li Z, Lanagan MT, Ratner MA, Marks TJ (2013) Sustainable high capacitance at high frequencies: metallic aluminum—polypropylene nanocomposites. ACS Nano 7(1):396–407CrossRefGoogle Scholar
  136. 136.
    Nan CW (1993) Physics of inhomogeneous inorganic materials. Prog Mater Sci 37(1):1–116CrossRefGoogle Scholar
  137. 137.
    Yang R, Ke T, Wong CP (2003) A study on epoxy-based high k composite for embedded capacitor with silver fillers coated self assembly monolayer insulating materials. Elec Comp C:1820–1822Google Scholar
  138. 138.
    Takele H, Jebril S, Strunskus T, Zaporojchenko V, Adelung R, Faupel F (2008) Tuning of electrical and structural properties of metal-polymer nanocomposite films prepared by co-evaporation technique. Appl Phys A-Mater 92(2):345–350CrossRefGoogle Scholar
  139. 139.
    Sheng P, Abeles B (1972) Voltage-induced tunneling conduction in granular metals at low-temperatures. Phys Rev Lett 28(1):34–37CrossRefGoogle Scholar
  140. 140.
    Webb AJ, Bloor D, Szablewski M, Atkinson D (2014) Temperature dependence of electrical transport in a pressure-sensitive nanocomposite. ACS Appl Mater Interfaces 6(15):12573–12580CrossRefGoogle Scholar
  141. 141.
    Busani T, Devine RAB (2005) Dielectric and infrared properties of TiO2 films containing anatase and rutile. Semicond Sci Technol 20(8):870–875CrossRefGoogle Scholar
  142. 142.
    Chu BJ, Lin MR, Neese B, Zhang QM (2009) Interfaces in poly(vinylidene fluoride) terpolymer/ZrO2 nanocomposites and their effect on dielectric properties. J Appl Phys 105(1):014103CrossRefGoogle Scholar
  143. 143.
    Grabowski CA, Fillery SP, Westing NM, Chi CZ, Meth JS, Durstock MF, Vaia RA (2013) Dielectric breakdown in silica-amorphous polymer nanocomposite films: the role of the polymer matrix. ACS Appl Mater Interfaces 5(12):5486–5492CrossRefGoogle Scholar
  144. 144.
    Wang S, Huang XY, Wang GY, Wang Y, He JL, Jiang PK (2015) Increasing the energy efficiency and breakdown strength of high-energy-density polymer nanocomposites by engineering the Ba0.7Sr0.3TiO3 nanowire surface via reversible addition-fragmentation chain transfer polymerization. J Phys Chem C 119 (45):25307–25318Google Scholar
  145. 145.
    Mackey M, Hiltner A, Baer E, Flandin L, Wolak MA, Shirk JS (2009) Enhanced breakdown strength of multilayered films fabricated by forced assembly microlayer coextrusion. J Phys D: Appl Phys 42(17):175304CrossRefGoogle Scholar
  146. 146.
    Osada M, Sasaki T (2012) Two-dimensional dielectric nanosheets: Novel nanoelectronics from nanocrystal building blocks. Adv Mater 24(2):210–228CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Center of Layered Polymeric Systems (CLiPS) and Department of Macromolecular Science and EngineeringCase Western Reserve UniversityClevelandUSA
  2. 2.Institut für Theoretische Physik II, Weiche MaterieHeinrich-Heine UniversitätDüsseldorfGermany
  3. 3.Theoretical DepartmentJoint Institute for High Temperatures, Russian Academy of SciencesMoscowRussia

Personalised recommendations