Overview of Underwater Acoustic Communication

Chapter

Abstract

Since radio signals are strongly attenuated in saltwater and often scattered by suspended particles (similar for optical signals), acoustic wave becomes major communication medium used in underwater environments (Preisig, Proceedings of the ACM international WS, underwater networks (WUWNet), Los Angeles, USA 2006, [1]). However, some characteristics of underwater acoustic channels raise new challenges to underwater network protocol design, which are summarized below.

References

  1. 1.
    Preisig, J.: Acoustic propagation considerations for underwater acoustic communications network development. In: Proceedings of the ACM International WS, Underwater Networks (WUWNet), Los Angeles, USA (2006)Google Scholar
  2. 2.
    Etter, P.C.: Underwater Acoustic Modeling, Principles, Techniques and Applications, 2nd edn. E & FN Spon, (1996)Google Scholar
  3. 3.
    Stojanovic, M.: Underwater acoustic communications: design considerations on the physical layer. In Proceedings of the Annual Conferences Wireless on Demand Network Systems and Services (WONS), Garmisch-Partenkirchen (2008)Google Scholar
  4. 4.
    Syed, A.A., Ye, W., Krishnamachari, B., Heidemann, J.: Understanding spatiotemporal uncertainty in medium access with ALOHA protocols. In: Proceedings of the ACM International WS, Underwater Networks (WUWNet), Montreal, Canada (2007)Google Scholar
  5. 5.
    Jiang, S.M.: State-of-the-art medium access control (MAC) protocols for underwater acoustic networks: a survey based on A MAC reference model. IEEE Commun. Surv. Tutor. 20(1), 1 (2018) (Quarter 2018)CrossRefGoogle Scholar
  6. 6.
    Pompili, D., Akyildiz, I.F.: Overview of networking protocols for underwater wireless communications. IEEE Commun. Mag. 97–102 (2009)CrossRefGoogle Scholar
  7. 7.
    Melodia, T., Kulhandjian, H., Kuo, L.-C., Demirors, E.: Advances in underwater acoustic networking. In: Basagni, S., Conti, M., Giordano, S., Stojmenovic, I. (eds.), Mobile Ad Hoc Networking: the Cutting Edge Directions, pp. 804 – 852. Wiley-IEEE Press (2013)CrossRefGoogle Scholar
  8. 8.
    Syed, A.A., Ye, W., Heidemann, J.: Time synchronization for high latency acoustic networks. In: Proceedings of the IEEE INFOCOM, pp. 1–12. Barcelona, Spain (2006)Google Scholar
  9. 9.
    Kredo, K. II, Djukic, P., Mohapatra, P.: STUMP: exploiting position diversity in the staggered TDMA underwater MAC protocol. In: Proceedings of the IEEE INFOCOM, Rio de Janeiro, Brasil (2009)Google Scholar
  10. 10.
    Jiang, S.M.: On reliable data transfer in underwater acoustic networks: a survey from networking perspective. IEEE Commun. Surv. Tutor. PP(99) (2018)Google Scholar
  11. 11.
    Stojanovic, M.: On the relationship between capacity and distance in an underwater acoustic communication channel. In: Proceedings of the ACM International WS, Underwater Networks (WUWNet), Los Angeles, USA (2006)Google Scholar
  12. 12.
    Sozer, E.M., Stojanovic, M., Proakis, J.G.: Underwater acoustic networks. IEEE J. Ocean. Eng. 25(1), 72–83 (2000)CrossRefGoogle Scholar
  13. 13.
    Catipovic, J.A.: Performance limitations in underwater acoustic telemetry. IEEE J. Ocean. Eng. 15(3), 205–216 (1990)CrossRefGoogle Scholar
  14. 14.
    Catipovic, J., Brady, D., Etchenmendy, S.: Development of underwater acoustic modems and networks. Oceanography 6(3), 112–119 (1993)CrossRefGoogle Scholar
  15. 15.
    Lanzagorta, M.: Underwater communications. MORGAN & CLAYPOOL (2012)CrossRefGoogle Scholar
  16. 16.
    Dąŕmico, A., Pittenger, R.: A brief history of active sonar. Aquat. Mamm. 35(4), 426–434 (2009)Google Scholar
  17. 17.
    Stojanovic, M.: Underwater acoustic communication. Wiley Encyclopedia of Electrical and Electronics Engineering, vol. 9, pp. 98–101. Wiley, Mew York (1999)Google Scholar
  18. 18.
    Makhija, D., Kumaraswamy, P., Roy, R.: Challenges and design of MAC protocol for underwater acoustic sensor networks. In: Proceedings of the Modeling & Optimization in Mobile, Ad Hoc & Wireless Net (2006)Google Scholar
  19. 19.
    Burrowes, G.E., Khan, J.Y.: Investigation of a short-range underwater acoustic communication channel for MAC protocol design. In: Proceedings of the Signal Processing and Communication Systems, pp. 1–8 (2010)Google Scholar
  20. 20.
    Mahmood, A., Chitre, M.: Ambient noise in warm shallow waters: a communications perspective. IEEE Commun. Mag. 55(6), 198–204 (2017)CrossRefGoogle Scholar
  21. 21.
    Quazi, A.H., Konrad, W.L.: Acoustic underwater communications. IEEE Commun. Mag. 24–30 (1982)Google Scholar
  22. 22.
    Tomasi, B., Toso, G., Casari, P., Zorzi, M.: Impact of time-varying underwater acoustic channels on the performance of routing protocols. IEEE J. Ocean. Eng. 38(4), 772–784 (2013)CrossRefGoogle Scholar
  23. 23.
    van Walree, P.A., Otnes, R.: Ultrawideband underwater acoustic communication channels. IEEE J. Ocean. Eng. 38(4), 678–688 (2013)CrossRefGoogle Scholar
  24. 24.
    van Walree, P.A.: Propagation and scattering effects in underwater acoustic communication channels. IEEE J. Ocean. Eng. 38(4), 614–631 (2013)CrossRefGoogle Scholar
  25. 25.
    Partan, J., Kurose, J., Levine, B.N.: A survey of practical issues in underwater networks. In: Proceedings of the ACM International WS, Underwater Networks (WUWNet), Los Angeles, California, USA (2006)Google Scholar
  26. 26.
    Kredo, K.B., II, Mohapatra, P.: A hybrid medium access control protocol for underwater wireless networks. In: Proceedings of the ACM International WS, Underwater Networks (WUWNet), Montreal, Canada (2007)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Marine Internet Laboratory (MILAB), College of Information EngineeringShanghai Maritime UniversityShanghaiChina

Personalised recommendations