Skip to main content

Routing in UWANs

  • Chapter
  • First Online:
  • 1025 Accesses

Abstract

This chapter reviews some typical UWAN routing protocols in terms of routing strategies, key issues addressed and basic idea of the proposed schemes as well as their feasibility in UWANs, according to the typical application scenarios of underwater networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Noh, Y., Lee, U., Wang, P., Choi, B.S.C., Gerla, M.: VAPR: void-aware pressure routing for underwater sensor networks. IEEE Trans. Mob. Comput. 12(5), 895–908 (2013)

    Article  Google Scholar 

  2. Otnes, R., Asterjadhi, A., Casari, P., Goetz, M., Husøy, T., Nissen, I., Rimstad, K., van Walree, P., Zorzi, M.: Underwater Acoustic Networking Techniques. Springer, Germany (2012)

    Book  Google Scholar 

  3. Basagni, S., Petrioli, C., Petroccia, R., Spaccini, D.: Channel-aware routing for underwater wireless networks. In: Proceedings of the MTS/IEEE OCEANS, Yeosu, Korea (2012)

    Google Scholar 

  4. Stojanovic, M.: On the relationship between capacity and distance in an underwater acoustic communication channel. In: Proceedings of the ACM International WS, Underwater Networks (WUWNet), Los Angeles, USA (2006)

    Google Scholar 

  5. Zorzi, M., Casari, P., Baldo, N., Harris, A.F.: Energy-efficient routing schemes for underwater acoustic networks. IEEE J. Sel. Areas Commun. 26(9), 1754–1766 (2008)

    Article  Google Scholar 

  6. Souiki, S., Feham, M., Feham, M., Labraoui, N.: Geographic routing protocols underwater wireless sensor networks: surveys. Int. J. Mob. Netw. (IJWMN) 6(1), 69–87 (2014)

    Google Scholar 

  7. Li, N., Martíłnez, J.-F., Chaus, J.M.M., Eckert, M.: A survey on underwater acoustic sensor network routing protocols. Sensors 16(414), 1–28 (2016)

    Google Scholar 

  8. Lu, Q., Liu, F., Zhang, Y., Jiang, S.M.: Routing protocols for underwater acoustic sensor networks: a survey from an application perspective. In: Zak, A. (ed.), Advances in Underwater Acoustics. INTECH (2017). ISBN 978-953-51-3609-5

    Google Scholar 

  9. Xie, G.G., Gibson, J.H.: A network layer protocol for UANs to address propagation delay induced performance limitations. In: Proceedings of the MTS/IEEE OCEANS, Honolulu, HI, USA, pp. 2087–2094 (2001)

    Google Scholar 

  10. Chen, Y., Zhang, S.Q., Xu, S.G., Li, G.Y.: Fundamental trade-offs on green wireless networks. IEEE Commun. Mag. 49(6), 30–37 (2011)

    Article  Google Scholar 

  11. Xie, P., Cui, J.-H.: VBF: vector-based forwarding protocol for underwater sensor networks. In Proceedings of the IFIP Networking Conferences on Coimbra, Portugal, pp. 1216–1221 (2006)

    Chapter  Google Scholar 

  12. Seah, W.K.G., Tan, H.X., Liu, Z., Ang, M.H.: Multiple-UUV approach for enhancing connectivity in underwater ad-hoc sensor networks. In: Proceedings of the MTS/IEEE OCEANS, Washington, DC, USA 2, 2263–2268 (2005)

    Google Scholar 

  13. Casari, P., Asterjadhi, A., Zorzi, M.: On channel aware routing policies in shallow water acoustic networks. In: Proceedings of the MTS/IEEE OCEANS, Waikoloa, Hawaii, USA (2011)

    Google Scholar 

  14. Guo, Z., Colombit, G., Wang, B., Cui, J.-H., Maggiorinit, D., Rossit, G.P.: Adaptive routing in underwater delay/disruption tolerant sensor networks. In: Proceedings of the Annual Conferences on Wireless on Demand Network Systems and Services (WONS), Garmisch-Partenkirchen, pp. 31–39 (2008)

    Google Scholar 

  15. Vieira, L.F.M., Lee, U., Gerla, M.: Phero-trail: a bio-inspired location service for mobile underwater sensor networks. IEEE J. Sel. Areas Commun. 28(4), 553–563 (2010)

    Article  Google Scholar 

  16. Yan, H., Shi, Z., Cui, J.-H.: DBR: depth-based routing for underwater sensor networks. In: Proceedings of the IFIP Networking Conference, Singapore pp. 72–86 (2008)

    Chapter  Google Scholar 

  17. Chen, B.Z., Hickey, P.C., Pompili, D.: Trajectory-aware communication solution for underwater gliders using WHOI micro-modems. In: Proceedings of the Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), Boston, USA, 2010

    Google Scholar 

  18. Lindgren, A., Doria, A., Davies, E., Grasic, S.: Probabilistic routing protocol for intermittently connected networks. Internet Research Task Force (IRTF) (2012)

    Google Scholar 

  19. Rice, J.A., Ong, C.W.: A discovery process for initializing underwater acoustic networks. In: Proceedings of the International Conference on Sensor Device Technologies and Applications (SENSORCOMM), Venice, pp. 408–415 (2010)

    Google Scholar 

  20. Nicolaou, N., See, A., Cui, J.-H., Maggiorini, D.: Improving the robustness of location-based routing for underwater sensor networks. In: Proceedings of the MTS/IEEE OCEANS, Aberdeen, UK, pp. 1–6 (2007)

    Google Scholar 

  21. Lee, U., Wang, P., Noh, Y., Vieira, L.F.M., Gerla, M., Cui, J.-H.: Pressure routing for underwater sensor networks. In: Proceedings of the IEEE INFOCOM, San Diego, CA, USA, pp. 1–9 (2010)

    Google Scholar 

  22. Zhang, S., Li, D.S.: A beam width and direction concerned routing for underwater acoustic sensor networks. In: Proceedings of the IEEE International Conference on Mobile Ad-hoc and Sensor Networks, Dalian, China, pp. 17–24 (2013)

    Google Scholar 

  23. Zhang, S., Li, D.S., Chen, J.: A link-state based adaptive feedback routing for underwater acoustic sensor networks. IEEE SENSORS J. 13(11), 4402–4412 (2013)

    Article  Google Scholar 

  24. Jiang, S.M. (2018) On reliable data transfer in underwater acoustic networks: a survey from networking perspective. IEEE Commun. Surv. Tutor. PP, 99 (2018)

    Google Scholar 

  25. Ogier, R.G., Rutenburg, V., Shacham, N.: Distributed algorithms for computing shortest pairs of disjoint paths. IEEE Trans. Inf. Theory 39(2), 443–455 (1993)

    Article  MathSciNet  Google Scholar 

  26. Lal, C., Laxmi, V., Gaur, M.S.: A node-disjoint multipath routing method based on AODV protocol for MANETs. In: Proceedings of the IEEE International Conference on Advanced Information Networking and Applications (AINA), Fukuoka, Japan, pp. 399–405 (2012)

    Google Scholar 

  27. Azad, S., Casari, P., Zorzi, M.: Multipath routing with limited cross-path interference in underwater networks. IEEE Wireless Commun. Lett. 3(5), 465–468 (2014)

    Article  Google Scholar 

  28. Marina, M.K., Das, S.R.: Ad hoc on-demand multipath distance vector routing. Wireless Commun. Mob. Comput. 6, 969–988 (2006)

    Article  Google Scholar 

  29. Goetz, M., Azad, S., Casari, P., Nissen, I., Zorzi, M.: Jamming-resistant multi-path routing for reliable intruder detection in underwater networks. In: Proceedings of the ACM International Conference on Underwater Networks and Systems (WUWNet), Seattle, WA, USA (2011)

    Google Scholar 

  30. Chen, Y.-S., Juang, T.-Y., Lin, Y.-W., Tsai, I.-C.: A low propagation delay multi-path routing protocol for underwater sensor networks. J. Internet Tech. 11(2), 153–165 (2010)

    Google Scholar 

  31. Zhou, Z., Peng, Z., Cui, J.-H., Shi, Z.: Efficient multipath communication for time-critical applications in underwater acoustic sensor networks. ACM/IEEE Trans. Netw. 19(1), 28–41 (2011)

    Article  Google Scholar 

  32. Jornet, J.M., Stojanovic, M., Zorzi, M.: Focused beam routing protocol for underwater acoustic networks. In: Proceedings of the ACM International WS. Underwater Networks (WUWNet), San Francisco, USA, pp. 75–82 (2008)

    Google Scholar 

  33. Jornet, J.M., Stojanovic, M., Zorzi, M.: On Joint frequency and power allocation in a cross-layer protocol for underwater acoustic networks. IEEE J. Ocean. Eng. 35(4), 936–947 (2010)

    Article  Google Scholar 

  34. Chen, Y.-S., Lin, Y.-W.: Mobicast routing protocol for underwater sensor networks. IEEE SENSORS J. 13(2), 737–749 (2013)

    Article  Google Scholar 

  35. Chirdchoo, N., Soh, W.S., Chua, K.C.: Sector-based routing with destination location prediction for underwater mobile networks. In: Proceedings of the International Conference on Advanced Information Networking and Applications Workshops (WAINA), Bradford, UK, pp. 1148–1153 (2009)

    Google Scholar 

  36. Wang, J.C., Li, D.S., Zhou, M., Ghosal, D.: Data collection with multiple mobile actors in underwater sensor networks. In: International Conference on Distributed Computing Systems (Workshop), Beijing, China, pp. 216–221 (2008)

    Google Scholar 

  37. Shah, P.M., Ullah, I., Khan, T., Hussain, M.S., Khan, Z.A., Qasim, U., Javaid, N.: MobiSink: cooperative routing protocol for underwater sensor networks with sink mobility. In: Proceedings of the IEEE International Conference on Advanced Information Networking and Applications (AINA), Crans-Montana, Switzerland (2016)

    Google Scholar 

  38. Emokpae, L., Younis, M., Signal reflection-enabled geographical routing for underwater sensor networks. In: Proceedings of the IEEE International Conference on Communication (ICC), Ottawa, Canada, pp. 147–151 (2012)

    Google Scholar 

  39. Hu, T.S., Fei, Y.S.: QELAR: a machine-learning-based adaptive routing protocol for energy-efficient and lifetime-extended underwater sensor networks. IEEE Trans. Mob. Comput. 9(6), 796–809 (2010)

    Article  Google Scholar 

  40. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, pp. 688–698. The MIT Press (1998)

    Google Scholar 

  41. Wang, P., Wang, T.: Adaptive routing for sensor networks using reinforcement learning. In: Proceedings of the IEEE International Conference on Computer and Information Technology, Seoul, Korea (2006)

    Google Scholar 

  42. Hu, T.S., Fei, Y.S.: QELAR: a q-learning-based energy-efficient and lifetime-aware routing protocol for underwater sensor networks. In: Proceedings of the IEEE International Performance, Computing, and Communications Conference (IPCCC), Austin, Texas, USA, pp. 247–255 (2008)

    Google Scholar 

  43. Hu, T.S., Fei, Y.S.: MURAO: a multi-level routing protocol for acoustic-optical hybrid underwater wireless sensor network. In: Proceedings of the Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), Seoul, Korea, pp. 218–226 (2012)

    Google Scholar 

  44. Hu, T.S., Fei, Y.S.: An adaptive routing protocol based on connectivity prediction for underwater disruption tolerant networks. In: Proceedings of the IEEE Global Telecommunications Conference (GLOBOCOM), Atlanta, USA, pp. 65–71 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengming Jiang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiang, S. (2018). Routing in UWANs. In: Wireless Networking Principles: From Terrestrial to Underwater Acoustic. Springer, Singapore. https://doi.org/10.1007/978-981-10-7775-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7775-3_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7774-6

  • Online ISBN: 978-981-10-7775-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics