Skip to main content

Monoamine Oxidases

  • Chapter
  • First Online:
Membrane Protein Complexes: Structure and Function

Part of the book series: Subcellular Biochemistry ((SCBI,volume 87))

Abstract

Monoamine oxidases A and B (MAO A and B) are mammalian flavoenzymes bound to the outer mitochondrial membrane. They were discovered almost a century ago and they have been the subject of many biochemical, structural and pharmacological investigations due to their central role in neurotransmitter metabolism. Currently, the treatment of Parkinson’s disease involves the use of selective MAO B inhibitors such as rasagiline and safinamide. MAO inhibition was shown to exert a general neuroprotective effect as a result of the reduction of oxidative stress produced by these enzymes, which seems to be relevant also in non-neuronal contexts. MAOs were successfully expressed as recombinant proteins in Pichia pastoris, which allowed a thorough biochemical and structural characterization. These enzymes are characterized by a globular water-soluble main body that is anchored to the mitochondrial membrane through a C-terminal α-helix, similar to other bitopic membrane proteins. In both MAO A and MAO B the enzyme active site consists of a hydrophobic cavity lined by residues that are conserved in the two isozymes, except for few details that determine substrate and inhibitor specificity. In particular, human MAO B features a dual-cavity active site whose conformation depends on the size of the bound ligand. This article provides a comprehensive and historical review of MAOs and the state-of-the-art of these enzymes as membrane drug targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EPR:

electron paramagnetic resonance

GFP:

green fluorescence protein

MAO:

monoamine oxidase

MPTP:

1-metil 4-fenil 1,2,3,6-tetraidro-piridina

ROS:

reactive oxygen species

References

  • Al-Nuaimi SK, Mackenzie EM, Baker GB (2012) Monoamine oxidase inhibitors and neuroprotection: a review. Am J Ther 19:436–448

    Article  PubMed  Google Scholar 

  • Arolas JL, Broder C, Jefferson T, Guevara T, Sterchi EE, Bode W, Stöcker W, Becker-Pauly C, Gomis-Rüth FX (2012) Structural basis for the sheddase function of human meprin β metalloproteinase at the plasma membrane. Proc Natl Acad Sci U S A 109:16131–16136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arslan B, Edmondson DE (2010) Expression of zebrafish (Danio rerio) monoamine oxidase (MAO) in Pichia pastoris: purification and comparison with human MAO A and MAO B. Prot Expr Purif 70:290–297

    Article  CAS  Google Scholar 

  • Bach AW, Lan NC, Johnson DL, Abell CW, Bembenek ME, Kwan SW, Seeburg PH, Shih JC (1988) cDNA cloning of human liver monoamine oxidase A and B: molecular differences in enzymatic properties. Proc Natl Acad Sci U S A 85:4934–4938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binda C, Newton-Vinson P, Hubalek F, Edmondson DE, Mattevi A (2002) Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders. Nat Struct Biol 9:22–26

    Article  CAS  PubMed  Google Scholar 

  • Binda C, Li M, Hubalek F, Restelli N, Edmondson DE, Mattevi A (2003) Insights into the mode of inhibition of human mitochondrial monoamine oxidase B from high-resolution crystal structures. Proc Natl Acad Sci U S A 100:9750–9755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binda C, Wang J, Pisani L, Caccia C, Carotti A, Salvati P, Edmondson DE, Mattevi A (2007) Structures of human monoamine oxidase B complexes with selective noncovalent inhibitors: safinamide and coumarin analogs. J Med Chem 50:5848–5852

    Article  CAS  PubMed  Google Scholar 

  • Binda C, Valente S, Romanenghi M, Pilotto S, Cirilli R, Karytinos A, Ciossani G, Botrugno OA, Forneris F, Tardugno M, Edmondson DE, Minucci S, Mattevi A, Mai A (2010) Biochemical, structural, and biological evaluation of tranylcypromine derivatives as inhibitors of histone demethylases LSD1 and LSD2. J Am Chem Soc 132:6827–6833

    Article  CAS  PubMed  Google Scholar 

  • Binda C, Aldeco M, Geldenhuys WJ, Tortorici M, Mattevi A, Edmondson DE (2011a) Molecular insights into human monoamine oxidase B inhibition by the glitazone anti-diabetes drugs. ACS Med Chem Lett 3:39–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Binda C, Milczek EM, Bonivento D, Wang J, Mattevi A, Edmondson DE (2011b) Lights and shadows on monoamine oxidase inhibition in neuroprotective pharmacological therapies. Curr Top Med Chem 11:2788–2796

    Article  CAS  PubMed  Google Scholar 

  • Bonivento D, Milczek EM, McDonald GR, Binda C, Holt A, Edmondson DE, Mattevi A (2010) Potentiation of ligand binding through cooperative effects in monoamine oxidase B. J Biol Chem 285:36849–36856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan SW, Dunlop RA, Rowe A, Double KL, Rodgers KJ (2012) L-DOPA is incorporated into brain proteins of patients treated for Parkinson’s disease, inducing toxicity in human neuroblastoma cells in vitro. Exp Neurol 238:29–37

    Article  CAS  PubMed  Google Scholar 

  • Chen K, HF W, Shih JC (1996) Influence of C-terminus on monoamine oxidase A and B catalytic activity. J Neurochem 66:797–803

    Article  CAS  PubMed  Google Scholar 

  • De Colibus L, Li M, Binda C, Lustig A, Edmondson DE, Mattevi A (2005) Three-dimensional structure of human monoamine oxidase A (MAO A): relation to the structures of rat MAO A and human MAO B. Proc Natl Acad Sci U S A 102:12684–12689

    Article  PubMed  PubMed Central  Google Scholar 

  • Deeks ED (2015) Safinamide: first global approval. Drugs 75:705–711

    Article  CAS  PubMed  Google Scholar 

  • Dézsi L, Vécsei L (2017) Monoamine oxidase B inhibitors in Parkinson’s disease. CNS Neurol Disord Drug Targets 16:425–439

    Article  PubMed  Google Scholar 

  • Edmondson DE, Binda C, Wang J, Upadhyay AK, Mattevi A (2009) Molecular and mechanistic properties of the membrane-bound mitochondrial monoamine oxidases. Biochemistry 48:4220–4230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emmerstorfer A, Wriessnegger T, Hirz M, Pichler H (2014) Overexpression of membrane proteins from higher eukaryotes in yeasts. Appl Microbiol Biotechnol 98:7671–7698

    Article  CAS  PubMed  Google Scholar 

  • Esteban G, Allan J, Samadi A, Mattevi A, Unzeta M, Marco-Contelles J, Binda C, Ramsay RR (2014) Kinetic and structural analysis of the irreversible inhibition of human monoamine oxidases by ASS234, a multi-target compound designed for use in Alzheimer’s disease. Biochim Biophys Acta 1844:1104–1110

    Article  CAS  PubMed  Google Scholar 

  • Forneris F, Mattevi A (2008) Enzymes without borders: mobilizing substrates, delivering products. Science 321:213–216

    Article  CAS  PubMed  Google Scholar 

  • Forneris F, Battaglioli E, Mattevi A, Binda C (2009) New roles of flavoproteins in molecular cell biology: histone demethylase LSD1 and chromatin. FEBS J 276:4304–4312

    Article  CAS  PubMed  Google Scholar 

  • Fowler CJ, Mantle TJ, Tipton KF (1982) The nature of inhibition of rat liver monoamine oxidase types A and B by the acetylenic inhibitors clorgyline, l-deprenyl, and pargyline. Biochem Pharmacol 17:3555–3561

    Article  Google Scholar 

  • Gottowik KJ, Malherbe P, Lang G, Da Prada M, Cesura AM (1995) Structure/function relationships of mitochondrial monoamine oxidase A and B chimeric forms. Eur J Biochem 230:934–942

    Article  CAS  PubMed  Google Scholar 

  • Hare ML (1928) Tyramine oxidase: a new enzyme system in liver. Biochem J 22:968–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson Pozzi M, Fitzpatrick PF (2010) A lysine conserved in the monoamine oxidase family is involved in oxidation of the reduced flavin in mouse polyamine oxidase. Arch Biochem Biophys 498:83–88

    Article  CAS  PubMed  Google Scholar 

  • Hroudová J, Singh N, Fišar Z, Ghosh KK (2016) Progress in drug development for Alzheimer’s disease: an overview in relation to mitochondrial energy metabolism. Eur J Med Chem 121:774–784

    Article  PubMed  Google Scholar 

  • Huang CY, Shih HW, Lin LY, Tien YW, Cheng TJ, Cheng WC, Wong CH, Ma C (2012) Crystal structure of Staphylococcus aureus transglycosylase in complex with a lipid II analog and elucidation of peptidoglycan synthesis mechanism. Proc Natl Acad Sci U S A 109:6496–6501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubálek F, Binda C, Khalil A, Li M, Mattevi A, Castagnoli N, Edmondson DE (2005) Demonstration of isoleucine 199 as a structural determinant for the selective inhibition of human monoamine oxidase B by specific reversible inhibitors. J Biol Chem 280:15761–11576

    Article  PubMed  Google Scholar 

  • Kaludercic N, Takimoto E, Nagayama T, Feng N, Lai EW, Bedja D, Chen K, Gabrielson KL, Blakely RD, Shih JC, Pacak K, Kass DA, Di Lisa F, Paolocci N (2010) Monoamine oxidase A-mediated enhanced catabolism of norepinephrine contributes to adverse remodeling and pump failure in hearts with pressure overload. Circ Res 106:193–202

    Article  CAS  PubMed  Google Scholar 

  • Kearney EB, Salach JI, Walker WH, Seng RL, Zeszotek E, Singer TP (1971) The covalently-bound flavin of hepatic monoamine oxidase. Isolation and sequence of a flavin peptide and evidence for binding at the 8-alpha position. Eur J Biochem 24:321–327

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Baik SH, Kang S, Cho SW, Bae J, Cha MY, Sailor MJ, Mook-Jung I, Ahn KH (2016) Close correlation of monoamine oxidase activity with progress of Alzheimer’s disease in mice, observed by in vivo two-photon imaging. ACS Cent Sci 2:967–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knoll J (2000) (-)Deprenyl (Selegiline): past, present and future. Neurobiology (Bp) 8:179–199

    CAS  Google Scholar 

  • Kumar MJ, Nicholls DG, Andersen JK (2003) Oxidative alpha-ketoglutarate dehydrogenase inhibition via subtle elevations in monoamine oxidase B levels results in loss of spare respiratory capacity – implications for Parkinson’s disease. J Biol Chem 278:46432–46439

    Article  CAS  PubMed  Google Scholar 

  • Kurokawa S, Niwano S, Niwano H, Murakami M, Ishikawa S, Masaki Y, Tamaki H, Toda T, Noda Y, Shimizu T, Izumi T, Ako J (2014) Cardiomyocyte-derived mitochondrial superoxide causes myocardial electrical remodeling by downregulating potassium channels and related molecules. Circ J 78:1950–1959

    Article  CAS  PubMed  Google Scholar 

  • Langston JW, Irwin I, Langston EB, Forno LS (1984a) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridinium ion (MPP+): identification of a metabolite of MPTP, a toxin selective for the Substantia nigra. Neurosci Lett 48:87–92

    Article  CAS  PubMed  Google Scholar 

  • Langston JW, Irwin I, Langston EB, Forno LS (1984b) Pargyline prevents MPTP-induced parkinsonism in primates. Science 225:1480–1482

    Article  CAS  PubMed  Google Scholar 

  • Li M, Hubálek F, Newton-Vinson P, Edmondson DE (2002) High-level expression of human liver monoamine oxidase A in Pichia pastoris: comparison with the enzyme expressed in Saccharomyes cerevisae. Prot Expr Purif 24:152–162

    Article  Google Scholar 

  • Li M, Binda C, Mattevi A, Edmondson DE (2006) Functional role of the “aromatic cage” in human monoamine oxidase B: structures and catalytic properties of Tyr435 mutant proteins. Biochemistry 45:4775–4784

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Yoshimura M, Yamashita E, Nakagawa A, Ito A, Tsukihara T (2004) Structure of rat monoamine oxidase A and its specific recognitions for substrates and inhibitors. J Mol Biol 338:103–114

    Article  CAS  PubMed  Google Scholar 

  • Mandel S, Weinreb O, Amit T, Youdim MB (2005) Mechanism of neuroprotective action of the anti-Parkinson drug rasagiline and its derivatives. Brain Res Brain Res Rev 48:379–387

    Article  CAS  PubMed  Google Scholar 

  • Maurel A, Hernandez C, Kunduzova O, Bompart G, Cambon C, Parini A, Frances B (2003) Age-dependent increase in hydrogen peroxide production by cardiac monoamine oxidase A in rats. Am J Phys Heart Circ Phys 284:H1460–H1467

    CAS  Google Scholar 

  • McNicholas S, Potterton E, Wilson KS, Noble ME (2011) Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr D Biol Crystallogr 67(Pt 4):386–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mialet-Perez J, D’Angelo R, Villeneuve C, Ordener C, Negre-Salvayre A, Parini A, Vindis C (2012) Serotonin 5-HT2A receptor-mediated hypertrophy is negatively regulated by caveolin-3 in cardiomyoblasts and neonatal cardiomyocytes. J Mol Cell Cardiol 52:502–510

    Article  CAS  PubMed  Google Scholar 

  • Milczek E, Binda C, Rovida S, Mattevi A, Edmondson DE (2011) The “gating” residues Ile199 and Tyr326 in human monoamine oxidase B function in substrate and inhibitor recognition. FEBS J 278:4860–4869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JR, Edmondson DE (1999) Influence of flavin analogue structure on the catalytic activities and flavinylation reactions of recombinant human liver monoamine oxidases A and B. J Biol Chem 274:23515–23525

    Article  CAS  PubMed  Google Scholar 

  • Mitoma J, Ito A (1992) Mitochondrial targeting signal of rat liver monoamine oxidase B is located at its carboxy terminus. J Biochem 111:20–24

    Article  CAS  PubMed  Google Scholar 

  • Monk BC, Tomasiak TM, Keniya MV, Huschmann FU, Tyndall JD, O’Connell JD 3rd, Cannon RD, McDonald JG, Rodriguez A, Finer-Moore JS, Stroud RM (2014) Architecture of a single membrane spanning cytochrome P450 suggests constraints that orient the catalytic domain relative to a bilayer. Proc Natl Acad Sci U S A 111:3865–3870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy J, Salach JI (1981) Identity of the active site flavin-peptide fragments from the human “A”-form and the bovine “B”-form of monoamine oxidase. Arch Biochem Biophys 208:388–394

    Article  CAS  PubMed  Google Scholar 

  • Nam SE, Kim AC, Paetzel M (2012) Crystal structure of Bacillus subtilis signal peptide peptidase A. J Mol Biol 419:347–358

    Article  CAS  PubMed  Google Scholar 

  • Nandigama RK, Edmondson DE (2000) Influence of FAD structure on its binding and activity with the C406A mutant of recombinant human liver monoamine oxidase A. J Biol Chem 275:20527–20532

    Article  CAS  PubMed  Google Scholar 

  • Newton-Vinson P, Hubálek F, Edmondson DE (2000) High-level expression of human liver monoamine oxidase B in Pichia pastoris. Prot Expr Purif 20:334–345

    Article  CAS  Google Scholar 

  • Orhan IE, Senol FS (2016) Designing multi-targeted therapeutics for the treatment of Alzheimer’s disease. Curr Top Med Chem 16:1889–1896

    Article  CAS  PubMed  Google Scholar 

  • Ramsay RR, Majekova M, Medina M, Valoti M (2016) Key targets for multi-target ligands designed to combat neurodegeneration. Front Neurosci 10:375

    Article  PubMed  PubMed Central  Google Scholar 

  • Rebrin I, Geha RM, Chen K, Shih JC (2001) Effects of Carboxy-terminal truncations on the activity and solubility of human monoamine oxidase B. J Biol Chem 276:29499–29506

    Article  CAS  PubMed  Google Scholar 

  • Robakis D, Fahn S (2015) Defining the role of the monoamine oxidase-B inhibitors for Parkinson’s disease. CNS Drugs 29:433–441

    Article  CAS  PubMed  Google Scholar 

  • Russell SM, Davey J, Mayer RJ (1979) The vectorial orientation of human monoamine oxidase in the mitochondrial outer membrane. Biochem J 181:7–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salach JI (1979) Monoamine oxidase from beef liver mitochondria: simplified isolation procedure, properties, and determination of its cysteinyl flavin content. Arch Biochem Biophys 192:128–137

    Article  CAS  PubMed  Google Scholar 

  • Schnaitman C, Erwin VG, Greenawalt JW (1967) Submitochondrial localization of monoamine oxidase – an enzymatic marker for outer membrane of rat liver mitochondria. J Cell Biol 32:719–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivasubramaniam SD, Finch CC, Rodriguez MJ, Mahy N, Billett EE (2003) A comparative study of the expression of monoamine oxidase-A and -B mRNA and protein in non-CNS human tissues. Cell Tissue Res 313:291–300

    Article  CAS  PubMed  Google Scholar 

  • Son SY, Ma J, Kondou Y, Yoshimura M, Yamashita E, Tsukihara T (2008) Structure of human monoamine oxidase A at 2.2 Å resolution: the control of opening the entry for substrates/inhibitors. Proc Natl Acad Sci U S A 105:5739–5744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung MT, Lai YT, Huang CY, Chou LY, Shih HW, Cheng WC, Wong CH, Ma C (2009) Crystal structure of the membrane-bound bifunctional transglycosylase PBP1b from Escherichia coli. Proc Natl Acad Sci U S A 106:8824–8829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang B, Zhao L, Liang R, Zhang Y, Wang L (2012) Magnetic nanoparticles: an improved method for mitochondrial isolation. Mol Med Rep 5:1271–1276

    CAS  PubMed  Google Scholar 

  • Tsirigos KD, Peters C, Shu N, Käll L, Elofsson A (2015) Nucleic Acids Research 43 (Webserver issue), W401–W407

    Google Scholar 

  • Umbarkar P, Singh S, Arkat S, Bodhankar SL, Lohidasan S, Sitasawad SL (2015) Monoamine oxidase-a is an important source of oxidative stress and promotes cardiac dysfunction, apoptosis, and fibrosis in diabetic cardiomyopathy. Free Radic Biol Med 87:263–273

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay AK, Edmondson DE (2008) Characterization of detergent purified recombinant rat liver monoamine oxidase B expressed in Pichia pastoris. Protein Expr Purif 59:349–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyay AK, Edmondson DE (2009) Development of spin-labeled pargyline analogues as specific inhibitors of human monoamine oxidases A and B. Biochemistry 48:3928–3935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyay A, Borbat P, Wang J, Freed J, Edmondson DE (2008a) Determination of the oligomeric states of human and rat monoamine oxidases in the outer mitochondrial membrane and octyl β-D-glucopyranoside micelles using pulsed dipolar electron spin resonance spectroscopy. Biochemistry 47:1554–1566

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay AK, Wang J, Edmondson DE (2008b) Comparison of the structural properties of the active site cavities of human and rat monoamine oxidase A and B in their soluble and membrane-bound forms. Biochemistry 47:526–536

    Article  CAS  PubMed  Google Scholar 

  • Urban P, Andersen JK, Hsu HPP, Pompon D (1991) Comparative membrane locations and activities of human monoamine oxidases expressed in yeast. FEBS Lett 286:142–146

    Article  CAS  PubMed  Google Scholar 

  • Villeneuve C, Guilbeau-Frugier C, Sicard P, Lairez O, Ordener C, Duparc T, De Paulis D, Couderc B, Spreux-Varoquaux O, Tortosa F, Garnier A, Knauf C, Valet P, Borchi E, Nediani C, Gharib A, Ovize M, Delisle MB, Parini A, Mialet-Perez J (2013) p53-PGC-1α pathway mediates oxidative mitochondrial damage and cardiomyocyte necrosis induced by monoamine oxidase-A upregulation: role in chronic left ventricular dysfunction in mice. Antioxid Redox Signal 18:5–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Edmondson DE (2010) High-level expression and purification of rat monoamine oxidase A (MAO A) in Pichia pastoris: comparison with human MAO A. Prot Expr Purif 70:211–217

    Article  CAS  Google Scholar 

  • Wang J, Edmondson DE (2011) Topological probes of monoamine oxidases A and B in rat liver mitochondria: inhibition by TEMPO-substituted pargyline analogues and inactivation by proteolysis. Biochemistry 50:2499–2505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weyler W (1994) Functional expression of C-terminally truncated human monoamine oxidase type A in Saccharomyces cerevisiae. J Neural Transm 41:3–15

    CAS  Google Scholar 

  • Weyler W, Salach JI (1985) Purification and properties of mitochondrial monoamine oxidase type A from human placenta. J Biol Chem 260:13199–13207

    CAS  PubMed  Google Scholar 

  • Weyler W, Titlow CC, Salach JI (1990) Catalytically active monoamine oxidase Type A from human liver expressed in Saccharomyces cerevisiae contains covalent FAD. Biochem Biophys Res Commun 173:1205–1211

    Article  CAS  PubMed  Google Scholar 

  • Yeh JI, Chinte U, Du S (2008) Structure of glycerol-3-phosphate dehydrogenase, an essential monotopic membrane enzyme involved in respiration and metabolism. Proc Natl Acad Sci U S A 105:3280–3285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeller EA, Barsky J (1952) In vivo inhibition of liver and brain monoamine oxidase by 1-Isonicotinyl-2-isopropyl hydrazine. Proc Soc Exp Biol Med 81:459–461

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Fondazione Cariplo (grant n. 2014-0672 to C.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Binda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Edmondson, D.E., Binda, C. (2018). Monoamine Oxidases. In: Harris, J., Boekema, E. (eds) Membrane Protein Complexes: Structure and Function. Subcellular Biochemistry, vol 87. Springer, Singapore. https://doi.org/10.1007/978-981-10-7757-9_5

Download citation

Publish with us

Policies and ethics