Skip to main content

The Cytochrome b 6 f Complex: Biophysical Aspects of Its Functioning in Chloroplasts

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 87))

Abstract

This chapter presents an overview of structural properties of the cytochrome (Cyt) b 6 f complex and its functioning in chloroplasts. The Cyt b 6 f complex stands at the crossroad of photosynthetic electron transport pathways, providing connectivity between Photosystem (PSI) and Photosysten II (PSII) and pumping protons across the membrane into the thylakoid lumen. After a brief review of the chloroplast electron transport chain, the consideration is focused on the structural organization of the Cyt b 6 f complex and its interaction with plastoquinol (PQH2, reduced form of plastoquinone), a mediator of electron transfer from PSII to the Cyt b 6 f complex. The processes of PQH2 oxidation by the Cyt b 6 f complex have been considered within the framework of the Mitchell’s Q-cycle. The overall rate of the intersystem electron transport is determined by PQH2 turnover at the quinone-binding site Qo of the Cyt b 6 f complex. The rate of PQH2 oxidation is controlled by the intrathylakoid pHin, which value determines the protonation/deprotonation events in the Qo-center. Two other regulatory mechanisms associated with the Cyt b 6 f complex are briefly overviewed: (i) redistribution of electron fluxes between alternative (linear and cyclic) pathways, and (ii) “state transitions” related to redistribution of solar energy between PSI and PSII.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Here and below, the general terms QH2 and Q are used to denote the quinol and quinone species, regardless of their origin (plastoquinone, PQ, or ubiquinone, UQ). SQ designates the redox states of semiquinone species, either plastosemiquinone (in the b 6 f complex) or ubisemiquinone (in the bc 1 complex), regardless of their protonation state.

  2. 2.

    It is likely that this species will appear in the form of the anion-radical \( {\mathrm{PQ}}^{\underset{\_}{\bullet }} \), because the pK values of semiquinones are usually fall in the range below the stromal pH establishes under the normal physiological conditions (pHout~7 − 8).

Abbreviations

CBC:

Calvin-Benson cycle

CEF1:

cyclic electron flow around photosystem I

ETC:

electron transport chain

Fd:

ferredoxin

FNR:

ferredoxin-NADP-oxidoreductase

ISP:

iron-sulfur protein

LEF:

linear electron flow

LHCI:

light-harvesting complex I

LHCII:

light-harvesting complex II

NDH:

NDH(P)H dehydrogenase complex

NPQ:

non-photochemical quenching

P680 :

special chlorophyll pair in PSII

P700 :

special chlorophyll pair in PSI

Pc:

plastocyanin

PCET:

proton-coupled electron transfer

PQ and PQH2 :

plastoquinone and plastoquinol, respectively

PSA:

photosynthetic apparatus

PSI and PSII:

photosystem I and photosystem II respectively

Q, SQ and QH2 :

general notations for three accessible redox states of quinone species – quinone (Q), semiquinone (SQ) and quinol (QH2)

TMQH2 :

trimethylbenzoquinol

UQ and UQH2 :

ubiquinone and ubiquinol, respectively

WOC:

water-oxidizing complex

References

  • Albertsson PÅ (2001) A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci 6:349–354

    Article  CAS  PubMed  Google Scholar 

  • Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098:275–335

    Article  CAS  PubMed  Google Scholar 

  • Allen JF (2003) Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain. Trends Plant Sci 8:15–19

    Article  CAS  PubMed  Google Scholar 

  • Alric J, Pierre Y, Picot D et al (2005) Spectral and redox characterization of the heme c i of the cytochrome b 6 f complex. Proc Natl Acad Sci U S A 102:15860–15865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson JM (1982) Distribution of the cytochromes of spinach chloroplasts between the appressed membranes of grana stacks and stroma-exposed thylakoid regions. FEBS Lett 138:62–66

    Article  CAS  Google Scholar 

  • Anderson JM, Chow WS, Goodchild DJ (1988) Thylakoid membrane organisation in sun/shade acclimation. Funct Plant Biol 15:11–26

    Google Scholar 

  • Andersson I (2008) Catalysis and regulation in Rubisco. J Exp Bot 59:1555–1568

    Article  CAS  PubMed  Google Scholar 

  • Balsera M, Schürmann P, Buchanan BB (2016) Redox regulation in chloroplasts. In: Kirchhoff H (ed) Chloroplasts. Current research and future trends. Caister Academic Press, Norfolk, pp 187–207

    Google Scholar 

  • Bellafiore S, Barneche F, Peltier G et al (2005) State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433:892–895

    Article  CAS  PubMed  Google Scholar 

  • Bendall DS, Manasse RS (1995) Cyclic photophosphorylation and electron transport. Biochim Biophys Acta 1229:23–38

    Article  Google Scholar 

  • Bennett J (1977) Phosphorylation of chloroplast membrane polypeptides. Nature 269:344–346

    Article  CAS  Google Scholar 

  • Benz JP, Lintala M, Soll J et al (2010) A new concept for ferredoxin-NADP(H) oxidoreductase binding to plant thylakoids. Trends Plant Sci 15:608–613

    Article  CAS  PubMed  Google Scholar 

  • Berry EA, Guergova-Kuras M, Huang L et al (2000) Structure and function of cytochrome bc complexes. Annu Rev Biochem 69:1005–1075

    Google Scholar 

  • Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell Science, Oxford

    Book  Google Scholar 

  • Bleier L, Dröse S (2013) Superoxide generation by complex III: from mechanistic rationales to functional consequences. Biochim Biophys Acta 1827:1320–1231

    Article  CAS  PubMed  Google Scholar 

  • Brandt U (1996) Bifurcated ubihydroquinone oxidation in the cytochrome bc 1 complex by proton-gated charge transfer. FEBS Lett 387:1–6

    Article  CAS  PubMed  Google Scholar 

  • Brandt U, Okun JG (1997) Role of deprotonation events in ubihydroquinone: cytochrome c oxidoreductase from bovine heart and yeast mitochondria. Biochemistry 36:11234–11240

    Article  CAS  PubMed  Google Scholar 

  • Brettel K (1997) Electron transfer and arrangement of the redox cofactors in photosystem I. Biochim Biophys Acta 1318:322–373

    Article  CAS  Google Scholar 

  • Breyton C (2000) Conformational changes in the cytochrome b 6 f complex induced by inhibitor binding. J Biol Chem 275:13195–13201

    Article  CAS  PubMed  Google Scholar 

  • Breyton C, Nandha B, Johnson G et al (2006) Redox modulation of cyclic electron flow around photosystem I in C3 plants. Biochemistry 45:13465–13475

    Article  CAS  PubMed  Google Scholar 

  • Buchanan BB (1980) Role of light in the regulation of chloroplast enzymes. Annu Rev Plant Physiol 31:341–374

    Article  CAS  Google Scholar 

  • Burrows PA, Sazanov LA, Svab Z et al (1998) Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO J 17:868–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cape JL, Bowman MK, Kramer DM (2006) Understanding the cytochrome bc complexes by what they don’t do. The Q-cycle at 30. Trends Plant Sci 11:46–55

    Article  CAS  PubMed  Google Scholar 

  • Cape JL, Bowman MK, Kramer DM (2007) A semiquinone intermediate generated at the Qo site of the cytochrome bc 1 complex: importance for the Q-cycle and superoxide production. Proc Natl Acad Sci U S A 104:7887–7892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardona T, Sedoud A, Cox N et al (2012) Charge separation in Photosystem II: a comparative and evolutionary overview. Biochim Biophys Acta 1817:26–43

    Article  CAS  PubMed  Google Scholar 

  • Chobot SE, Zhang H, Moser CC et al (2008) Breaking the Q-cycle: finding new ways to study Qo through thermodynamic manipulations. J Bioenerg Biomembr 40:501–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chovancová E, Pavelka A, Beneš P et al (2012) CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PloS Comput Biol 8:e1002708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clark WM (1960) Oxidation-reduction potentials of organic systems. Williams and Wilkins, Baltimore

    Google Scholar 

  • Cramer WA, Zhang H, Yan J et al (2006) Transmembrane traffic in the cytochrome b 6 f complex. Annu Rev Biochem 75:769–790

    Article  CAS  PubMed  Google Scholar 

  • Cramer WA, Hasan SS, Yamashita E (2011) The Q cycle of cytochrome bc complexes: A structure perspective. Biochim Biophys Acta 1807:788–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crofts AR (2004a) The cytochrome bc 1 complex: function in the context of structure. Annu Rev Physiol 66:689–733

    Article  CAS  PubMed  Google Scholar 

  • Crofts AR (2004b) Proton-coupled electron transfer at the Qo-site of the bc 1 complex controls the rate of ubihydroquinone oxidation. Biochim Biophys Acta 1655:77–92

    Article  CAS  PubMed  Google Scholar 

  • Crofts AR, Guergova-Kuras M, Huang L-S et al (1999a) Mechanism of ubiquinol oxidation by the bc 1 complex: role of the iron sulfur protein and its mobility. Biochemistry 38:15791–15806

    Article  CAS  PubMed  Google Scholar 

  • Crofts AR, Hong S, Zhang Z et al (1999b) Physicochemical aspects of the movement of the Rieske iron sulfur protein during quinol oxidation by the bc 1 complex from mitochondria and photosynthetic bacteria. Biochemistry 38:15827–15839

    Article  CAS  PubMed  Google Scholar 

  • Crofts AR, Guergova-Kuras M, Kuras R et al (2000) Proton-coupled electron transfer at the Qo-site: what type of mechanism can account for the high activation barrier? Biochim Biophys Acta 1459:456–466

    Article  CAS  PubMed  Google Scholar 

  • Crofts AR, Lhee S, Crofts SB et al (2006) Proton pumping in the bc 1 complex: a new gating mechanism that prevents short circuits. Biochim Biophys Acta 1757:1019–1034

    Article  CAS  PubMed  Google Scholar 

  • Crofts AR, Hong S, Wilson C et al (2013) The mechanism of ubihydroquinone oxidation at the Qo-site of the cytochrome bc 1 complex. Biochim Biophys Acta 1827:1362–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz JA, Avenson TJ, Kanazawa A et al (2007) Plasticity in light reactions of photosynthesis for energy production and photoprotection. J Exp Bot 56:395–406

    Article  CAS  Google Scholar 

  • DalCorso G, Pesaresi P, Masiero S et al (2008) A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132:273–285

    Article  CAS  PubMed  Google Scholar 

  • Darrouzet E, Moser CC, Dutton PL et al (2001) Large scale domain movement in cytochrome bc 1: a new device for electron transfer in proteins. Trends Biochem Sci 26:445–451

    Article  CAS  PubMed  Google Scholar 

  • de Vitry C, Ouyang Y, Finazzi G et al (2004) The chloroplast Rieske iron-sulfur protein: at the crossroad of electron transport and signal transduction. J Biol Chem 279:44621–44627

    Article  PubMed  CAS  Google Scholar 

  • Dekker JP, Boekema EJ (2005) Supermolecular organization of the thylakoid membrane proteins in green plants. Biochim Biophys Acta 1706:12–39

    Article  CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Cohu CM, Muller O et al (2012) Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons. Photosynth Res 113:75–88

    Article  CAS  PubMed  Google Scholar 

  • Dietz K-J, Pfannschmidt T (2011) Novel regulators in photosynthetic redox control of plant metabolism and gene expression. Plant Physiol 155:1477–1485

    Article  CAS  PubMed  Google Scholar 

  • Eberhard S, Finazzi G, Wollman FA (2008) The dynamics of photosynthesis. Annu Rev Genet 42:463–515

    Article  CAS  PubMed  Google Scholar 

  • Edwards GE, Walker DA (1983) C3, C4: mechanisms, and cellular and environmental regulation of photosynthesis. Blackwell, Oxford

    Google Scholar 

  • Endo T, Shikanai T, Sato F et al (1998) NAD(P)H dehydrogenase-dependent, antimycin A-sensitive electron donation to plastoquinone in tobacco chloroplasts. Plant Cell Physiol 39:1226–1231

    Article  CAS  Google Scholar 

  • Esser L, Gong X, Yang S et al (2006) Surface-modulated motion switch: capture and release of iron-sulfur protein in the cytochrome bc 1 complex. Proc Natl Acad Sci U S A 103:13045–13050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finazzi G (2002) Redox-coupled proton pumping activity in cytochrome b 6 f, as evidenced by the pH dependence of electron transfer in whole cells of Chlamydomonas reinhardtii. Biochemistry 41:7475–7482

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Neukermans J, Queval G et al (2012) Photosynthetic control of electron transport and the regulation of gene expression. J Exp Bot 63:1637–1661

    Article  CAS  PubMed  Google Scholar 

  • Frolov AE, Tikhonov AN (2009) The oxidation of plastoquinol by a cytochrome b 6 f complex: a density functional theory study. Russian J Phys Chem A 83:506–508

    Article  CAS  Google Scholar 

  • Fromme P, Jordan P, Krauss N (2001) Structure of photosystem I. Biochim Biophys Acta 1507:5–31

    Article  CAS  PubMed  Google Scholar 

  • Galka P, Santabarbara S, Khuong TTH et al (2012) Functional analyses of the plant photosystem I-light-harvesting complex II supercomplex reveal that light-harvesting complex II loosely bound to Photosystem II is a very efficient antenna for Photosystem I in state II. Plant Cell 24:2963–2978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Haehnel W (1973) Electron transport between plastoquinone and chlorophyll aI. Biochim Biophys Acta 305:618–631

    Article  CAS  PubMed  Google Scholar 

  • Haehnel W (1976a) The reduction kinetics of chlorophyll a1 as an indicator for proton uptake between the light reactions in chloroplasts. Biochim Biophys Acta 440:506–521

    Article  CAS  PubMed  Google Scholar 

  • Haehnel W (1976b) The ratio of the two light reactions and their coupling in chloroplasts. Biochim Biophys Acta 423:499–509

    Article  CAS  PubMed  Google Scholar 

  • Haehnel W (1982) On the functional organization of electron transport from plastoquinone to photosystem I. Biochim Biophys Acta 682:245–247

    Article  CAS  Google Scholar 

  • Haehnel W (1984) Photosynthetic electron transport in higher plants. Annu Rev Plant Physiol 35:659–693

    Article  CAS  Google Scholar 

  • Haldrup A, Jensen PE, Lunde C, Scheller HV (2001) Balance of power: a view of the mechanism of photosynthetic state transitions. Trends Plant Sci 6:301–305

    Article  CAS  PubMed  Google Scholar 

  • Harbinson J, Hedley CL (1989) The kinetics of P-700+ reduction in leaves: a novel in situ probe of thylakoid functioning. Plant Cell and Environ 12:357–369

    Article  CAS  Google Scholar 

  • Hasan SS, Yamashita E, Cramer WA (2013a) Transmembrane signaling and assembly of the cytochrome b 6 f-lipidic charge transfer complex. Biochim Biophys Acta 1827:1295–1308

    Article  CAS  PubMed Central  Google Scholar 

  • Hasan SS, Stofleth JT, Yamashita E et al (2013b) Lipid-induced conformational changes within the cytochrome b 6 f complex in oxygenic photosynthesis. Biochemistry 52:2649–2654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan SS, Yamashita E, Baniulis D et al (2013c) Quinone-dependent proton transfer pathways in the photosynthetic cytochrome b 6 f complex. Proc Natl Acad Sci 110:4297–4302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heimann S, Ponamarev MV, Cramer WA (2000) Movement of the Rieske iron-sulfur protein in the p-side bulk aqueous phase: effect of lumenal viscosity on redox reactions of the cytochrome b 6 f complex. Biochemistry 39:2692–2699

    Article  CAS  PubMed  Google Scholar 

  • Hertle AP, Blunder T, Wunder T et al (2013) PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow. Mol Cell 49:511–523

    Article  CAS  PubMed  Google Scholar 

  • Hong SJ, Ugulava N, Guergova-Kuras M et al (1999) The energy landscape for ubihydroquinone oxidation at the Qo-site of the bc 1 complex in Rhodobacter sphaeroides. J Biol Chem 274:33931–33944

    Article  CAS  PubMed  Google Scholar 

  • Hope AB (2000) Electron transfers amongst cytochrome f, plastocyanin and photosystem I: kinetics and mechanisms. Biochim Biophys Acta 1456:5–26

    Article  CAS  PubMed  Google Scholar 

  • Hope AB, Valent P, Matthews DB (1994) Effects of pH on the kinetics of redox reactions in and around the cytochrome bf complex in an isolated system. Photosynth Res 42:111–120

    Article  CAS  PubMed  Google Scholar 

  • Horton P (2012) Optimization of light harvesting and photoprotection: molecular mechanisms and physiological consequences. Phil Trans R Soc B 367:3455–3465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsueh K-L, Westler WM, Markley JL (2010) NMR investigations of the Rieske protein from Thermus thermophilus support a coupled proton and electron transfer mechanism. J Am Chem Soc 132:7908–7918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwai M, Takizawa K, Tokutsu R et al (2010) Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature 464:1210–1213

    Article  CAS  PubMed  Google Scholar 

  • Iwaki M, Yakovlev G, Hirst J et al (2005) Direct observation of redox-linked histidine protonation changes in the iron–sulfur protein of the cytochrome bc 1 complex by ATR-FTIR spectroscopy. Biochemistry 44:4230–4237

    Article  CAS  PubMed  Google Scholar 

  • Iwata S, Lee JW, Okada K et al (1998) Complete structure of the 11-subunit bovine mitochondrial cytochrome bc 1 complex. Science 281:64–71

    Article  CAS  PubMed  Google Scholar 

  • Izrailev S, Crofts AR, Berry EA et al (1999) Steered molecular dynamics simulation of the Rieske subunit motion in the cytochrome bc 1 complex. Biophys J 77:1753–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jallet D, Cantrell M, Peers G (2016) New players for photoprotection and light acclimation. In: Kirchhoff H (ed) Chloroplasts. Current research and future trends. Caister Academic Press, Norfolk, pp 133–159

    Google Scholar 

  • Järvi S, Gollan PJ, Aro E-M (2013) Understanding the roles of the thylakoid lumen in photosynthetic regulation. Front Plant Sci. https://doi.org/10.3389/fpls.2013.00434

  • Joët T, Cournac L, Horvath EM et al (2001) Increased sensitivity of photosynthesis to antimycin A induced by inactivation of the chloroplast ndhB gene. Evidence for a participation of the NADH-dehydrogenase complex to cyclic electron flow around photosystem I. Plant Physiol 125:1919–1929

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson GN (2011) Physiology of PSI cyclic electron transport in higher plants. Biochim Biophys Acta 1807:906–911

    Article  CAS  PubMed  Google Scholar 

  • Joliot P, Joliot A (2005) Quantification of cyclic and linear flows in plants. Proc Natl Acad Sci U S A 102:4913–4918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joliot P, Joliot A (2006) Cyclic electron flow in C3 plants. Biochim Biophys Acta 1757:362–368

    Article  CAS  PubMed  Google Scholar 

  • Jordan P, Fromme P, Witt HT et al (2001) Three-dimensional structure of photosystem I at 2.5 Å resolution. Nature 411:909–917

    Article  CAS  PubMed  Google Scholar 

  • Junge W, Nelson N (2015) ATP synthase. Annu Rev Biochem 83:631–657

    Article  CAS  Google Scholar 

  • Kim H, Xia D, Yu CA et al (1998) Inhibitor binding changes domain mobility in the iron–sulphur protein of the mitochondrial bc 1 complex from bovine heart. Proc Natl Acad Sci U S A 95:8026–8033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirchhoff H (2008) Significance of protein crowding, order and mobility for photosynthetic membrane functions. Biochem Soc Trans 36:967–970

    Article  CAS  PubMed  Google Scholar 

  • Kirchhoff H (2013) Architectural switches in plant thylakoid membranes. Photosynth Res 116:481–487

    Article  CAS  PubMed  Google Scholar 

  • Kirchhoff H (2014) Diffusion of molecules and macromolecules in thylakoid membranes. Biochim Biophys Acta 1837:495–502

    Article  CAS  PubMed  Google Scholar 

  • Kono M, Terashima I (2014) Long-term and short-term responses of the photosynthetic electron transport to fluctuating light. J Photochem Photobiol B 137:89–99

    Article  CAS  PubMed  Google Scholar 

  • Kono M, Noguchi K, Terashima I (2014) Roles of cyclic electron flow around PSI (CEF-PSI) and O2-dependent alternative pathways in regulation of the photosynthetic electron flow in short-term fluctuating light in Arabidopsis thaliana. Plant Cell Physiol 55:990–1004

    Article  CAS  PubMed  Google Scholar 

  • Kramer DM, Sacksteder CA, Cruz JA (1999) How acidic is the lumen? Photosynth Res 60:151–163

    Article  CAS  Google Scholar 

  • Kramer DM, Avenson TJ, Edwards GE (2004) Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends Plant Sci 9:349–357

    Article  CAS  PubMed  Google Scholar 

  • Kubicki A, Funk E, Westhoff P et al (1996) Differential expression of plastome-encoded ndh genes in mesophyll and bundle-sheath chloroplasts of the C4 plant Sorghum bicolor indicates that the complex I-homologous NAD(P)H-plastoquinone oxidoreductase is involved in cyclic electron transport. Planta 199:276–281

    Google Scholar 

  • Kubota K, Sakurai I, Katayama K et al (2009) Purification and characterization of photosystem I complex from Synechocystis sp. PCC 6803 by expressing histidine-tagged subunits. Biochim Biophys Acta 1797:98–105

    Article  PubMed  CAS  Google Scholar 

  • Kurisu G, Zhang H, Smith JL et al (2003) Structure of the cytochrome b 6 f complex of oxygenic photosynthesis: tuning the cavity. Science 302:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Laisk A, Eichelmann H, Oja V et al (2005) Control of cytochrome b 6 f at low and high light intensity and cyclic electron transport in leaves. Biochim Biophys Acta 1708:79–90

    Article  CAS  PubMed  Google Scholar 

  • Lavergne J, Joliot P (1991) Restricted diffusion in photosynthetic membranes. Trends Biochem Sci 16:129–134

    Article  CAS  PubMed  Google Scholar 

  • Lemeille S, Rochaix J-D (2010) State transitions at the crossroad of thylakoid signaling pathways. Photosynth Res 106:33–46

    Article  CAS  PubMed  Google Scholar 

  • Lemeille S, Willig A, Depège-Fargeix N et al (2009) Analysis of the chloroplasts protein kinase Stt7 during state transition. PLoS Biol 7 e1000045, 664–673

    Google Scholar 

  • Lennartz K, Plucken H, Seidler A et al (2001) HCF164 encodes a thioredoxin-like protein involved in the biogenesis of the cytochrome b 6 f complex in Arabidopsis. Plant Cell 13:2539–2551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lhee S, Kolling DRJ, Nair SK et al (2010) Modifications of protein environment of the [2Fe-2S] cluster of the bc 1 complex: effects on biophysical properties of the Rieske iron-sulfur protein and on the kinetics of the complex. J Biol Chem 285:9233–9248

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Wakao S, Fischer BB et al (2009) Sensing and responding to excess light. Annu Rev Plant Biol 60:239–260

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK, Babani F (2004) Light adaptation and senescence of the photosynthetic apparatus. Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis, Advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, pp 713–736

    Chapter  Google Scholar 

  • Lin I-J, Chen Y, Fee JA, Song J et al (2006) Rieske protein from Thermus thermophilus: 15N NMR titration study demonstrates the role of iron-ligated histidines in the pH dependence of the reduction potential. J Am Chem Soc 128:10672–10673

    Article  CAS  PubMed  Google Scholar 

  • Link TA (1997) The role of the “Rieske” iron sulfur protein in the hydroquinone oxidation (Qp) site of the cytochrome bc 1 complex: the “proton-gated affinity change” mechanism. FEBS Lett 412:257–264

    Article  CAS  PubMed  Google Scholar 

  • Malnoë A, Wollman F-A, de Vitry C et al (2011) Photosynthetic growth despite a broken Q-cycle. Nature Communications 2:301. https://doi.org/10.1038/ncomms1299/www.nature.com/naturecommunications

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mamedov M, Govindjee, Nadtochenko V et al (2015) Primary electron transfer processes in photosynthetic reaction centers from oxygenic organisms. Photosynth Res 125:51–63

    Article  CAS  PubMed  Google Scholar 

  • Michelet L, Zaffagnini M, Morisse S et al (2013) Redox regulation of the Calvin–Benson cycle: something old, something new. Front Plant Sci 4:Article 470. https://doi.org/10.3389/fpls.2013.00470

  • Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev 41:445–502

    Article  CAS  PubMed  Google Scholar 

  • Mitchell P (1976) Possible molecular mechanisms of the protonmotive function of cytochrome systems. J Theor Biol 62:327–367

    Article  CAS  PubMed  Google Scholar 

  • Motohashi K, Hisabori T (2006) HCF164 receives reducing equivalents from stromal thioredoxin across the thylakoid membrane and mediates reduction of target proteins in the thylakoid lumen. J Biol Chem 281:35039–35047

    Article  CAS  PubMed  Google Scholar 

  • Müh F, Glöckner C, Hellmich J et al (2012) Light-induced quinone reduction in photosystem II. Biochim Biophys Acta 1817:44–65

    Article  PubMed  CAS  Google Scholar 

  • Mulkidjanian AY (2005) Ubiquinol oxidation in the cytochrome bc 1 complex: reaction mechanism and prevention of short-circuiting. Biochim Biophys Acta 1709:5–34

    Article  CAS  PubMed  Google Scholar 

  • Munekage Y, Hojo M, Meurer J et al (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:361–371

    Article  CAS  PubMed  Google Scholar 

  • Munekage Y, Hashimoto M, Miyake C et al (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429:579–582

    Article  CAS  PubMed  Google Scholar 

  • Munekage Y, Genty B, Peltier G (2008) Effect of PGR5 impairment on photosynthesis and growth in Arabidopsis thaliana. Plant Cell Physiol 49:1688–1698

    Article  CAS  PubMed  Google Scholar 

  • Nelson N, Yocum CF (2006) Structure and function of photosystems I and II. Annu Rev Plant Biol 57:521–565

    Article  CAS  PubMed  Google Scholar 

  • Osyczka A, Moser CC, Daldal F et al (2004) Reversible redox energy coupling in electron transfer chains. Science 427:607–612

    CAS  Google Scholar 

  • Osyczka A, Moser CC, Dutton L (2005) Fixing the Q cycle. Trends Biochem Sci 30:176–182

    Article  CAS  PubMed  Google Scholar 

  • Page CC, Moser CC, Chen X et al (1999) Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 402:47–52

    Article  CAS  PubMed  Google Scholar 

  • Peng LW, Shimizu H, Shikanai T (2008) The chloroplast NAD(P)H dehydrogenase complex interacts with Photosystem I in Arabidopsis. J Biol Chem 283:34873–34879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng LW, Fukao Y, Fujiwara M et al (2009) Efficient operation of NAD(P)H dehydrogenase requires supercomplex formation with Photosystem I via minor LHCI in Arabidopsis. Plant Cell 21:3623–3640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pesaresi P, Hertle A, Pribil M et al (2010) Optimizing photosynthesis under fluctuating light. The role of the Arabidopsis STN7 kinase. Plant Signal Behav 5:21–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierre Y, Breyton C, Kramer D, Popot J-L (1995) Purification and characterization of the cytochrome b 6 f complex from Chlamydomonas reinhardtii. J Biol Chem 270:29342–29349

    Google Scholar 

  • Ponamarev MV, Cramer WA (1998) Perturbation of the internal water chain in cytochrome f of oxygenic photosynthesis: loss of concerted reduction of cytochromes f and b. Biochemistry 37:17199–17208

    Article  CAS  PubMed  Google Scholar 

  • Postila PA, Kaszuba K, Sarewicz M et al (2013) Key role of water in proton transfer at the Qo-site of the cytochrome bc 1 complex predicted by atomistic molecular dynamics simulations. Biochim Biophys Acta 1827:761–768

    Article  CAS  PubMed  Google Scholar 

  • Puthiyaveetil S, Kirchhoff H, Hohner R (2016) Structural and functional dynamics of the thylakoid membrane system. In: Kirchhoff H (ed) Chloroplasts. Current research and future trends. Caister Academic Press, Norfolk, pp 59–87

    Google Scholar 

  • Rich PR (2004) The quinone chemistry of bc complexes. Biochim Biophys Acta 1658:165–171

    Article  CAS  PubMed  Google Scholar 

  • Roberts AG, Bowman MK, Kramer DM (2002) Certain metal ions are inhibitors of cytochrome b 6 f complex ‘Rieske’ iron-sulfur protein domain movements. Biochemistry 41:4070–4079

    Article  CAS  PubMed  Google Scholar 

  • Rochaix J-D (2014) Regulation and dynamics of the light-harvesting system. Annu Rev Plant Biol 65:287–309

    Article  CAS  PubMed  Google Scholar 

  • Ruban A (2012) The photosynthetic membrane: molecular mechanisms and biophysics of light harvesting. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  • Rumberg B, Siggel U (1969) pH changes in the inner phase of the thylakoids during photosynthesis. Naturwissenschaften 56:130–132

    Article  CAS  PubMed  Google Scholar 

  • Sainz G, Carrell CJ, Ponamarev MV et al (2000) Interruption of the internal water chain of cytochrome f impairs photosynthetic function. Biochemistry 39:9164–9173

    Article  CAS  PubMed  Google Scholar 

  • Samoilova RI, Kolling D, Uzawa T et al (2002) The interaction of the Rieske iron sulfur protein with occupants of the Qo-site of the bc 1 complex, probed by 1D and 2D electron spin echo envelope modulation. J Biol Chem 277:4605–4608

    Article  CAS  PubMed  Google Scholar 

  • Schöttler MA, Tôth SZ, Boulouis A, Kahlau S (2015) Photosynthetic complex stoichiometry dynamics in higher plants: biogenesis, function, and turnover of ATP synthase and the cytochrome b 6 f complex. J Exp Bot 66:2373–2400

    Google Scholar 

  • Seelert H, Poetsch A, Dencher NA et al (2000) Structural biology. Proton-powered turbine of a plant motor. Nature 405:418–419

    Article  CAS  PubMed  Google Scholar 

  • Shelaev IV, Gostev FE, Mamedov MD et al (2010) Femtosecond primary charge separation in photosystem I. Biochim Biophys Acta 1797:1410–1420

    Article  CAS  PubMed  Google Scholar 

  • Shikanai T (2007) Cyclic electron transport around photosystem I: Genetic approaches. Plant Biol 58:199–217

    Article  CAS  Google Scholar 

  • Shikanai T (2016) Chloroplast NDH: a different enzyme with a structure similar to that of respiratory NADH dehydrogenase. Biochim Biophys Acta 1857:1015–1022

    Article  CAS  PubMed  Google Scholar 

  • Shikanai T, Endo T, Hashimoto et al (1998) Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. Proc Natl Acad Sci U S A 95:9705–9709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siggel U, Renger G, Stiehl HH et al (1972) Evidence for electronic and ionic interaction between electron transport chains in chloroplasts. Biochim Biophys Acta:328–335

    Google Scholar 

  • Snyder CH, Gutierrez-Cirlos EB, Trumpower BL (2000) Evidence for a concerted mechanism of ubiquinol oxidation by the cytochrome bc 1 complex. J Biol Chem 275:13535–13541

    Article  CAS  PubMed  Google Scholar 

  • Soriano GM, Ponamarev MV, Tae G-S et al (1996) Effect of the interdomain basic region of cytochrome f on its redox reactions in vivo. Biochemistry 35:14590–14598

    Article  CAS  PubMed  Google Scholar 

  • Soriano GM, Guo L-W, de Vitry C et al (2002) Electron transfer from the Rieske iron-sulfur protein (ISP) to cytochrome f in vitro. Is a guided trajectory of the ISP necessary for competent docking? J Biol Chem 277:41865–41871

    Article  CAS  PubMed  Google Scholar 

  • Staehelin LA (2003) Chloroplast structure: from chlorophyll granules to supra-molecular architecture of thylakoid membranes. Photosynth Res 76:185–196

    Article  CAS  PubMed  Google Scholar 

  • Stiehl HH, Witt HT (1969) Quantitative treatment of the function of plastoquinone in photosynthesis. Z Naturforsch 24b:1588–1598

    Google Scholar 

  • Stirbet A (2013) Excitonic connectivity between photosystem II units: what is it, and how to measure it. Photosynth Res 116:189–214

    Article  CAS  PubMed  Google Scholar 

  • Strand DD, Fisher N, Kramer DM (2016) Distinct energetics and regulatory functions of the two major cyclic electron flow pathways in chloroplasts. In: Kirchhoff H (ed) Chloroplasts. Current research and future trends. Caister Academic Press, Norfolk, pp 89–100

    Google Scholar 

  • Stroebel D, Choquet Y, Popot J-L et al (2003) An atypical heam in the cytochrome b 6 f complex. Nature 426:413–418

    Article  CAS  PubMed  Google Scholar 

  • Suorsa M, Järvi S, Grieco M et al (2012) PROTON GRADIENT REGULATION5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artificially fluctuating light conditions. Plant Cell 24:2934–2948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tikhonov AN (2013) pH-dependent regulation of electron transport and ATP synthesis in chloroplasts. Photosynth Res 116:511–534

    Article  CAS  PubMed  Google Scholar 

  • Tikhonov AN (2014) The cytochrome b 6 f complex at the crossroad of photosynthetic electron transport pathways. Plant Physiol Biochem 81:163–183

    Article  CAS  PubMed  Google Scholar 

  • Tikhonov AN (2015) Induction events and short-term regulation of electron transport in chloroplasts: an overview. Photosynth Res 125:65–94

    Article  CAS  PubMed  Google Scholar 

  • Tikhonov AN (2016) Modeling electron and proton transport in chloroplasts. In: Kirchhoff H (ed) Chloroplasts. Current Research and Future Trends. Caister Academic Press, Norfolk, pp 101–134

    Google Scholar 

  • Tikhonov AN, Ruuge EK (1979) Electron paramagnetic resonance study of electron transport in photosynthetic systems. VIII. The interplay between two photosystems and kinetics of P700 redox transients under various conditions of flash excitation. Molec Biol (Moscow) 13:1085–1097

    CAS  Google Scholar 

  • Tikhonov AN, Vershubskii AV (2017) Connectivity between electron transport complexes and modulation of photosystem II activity in chloroplasts. Photosynth Res 133:103–114

    Google Scholar 

  • Tikhonov AN, Khomutov GB, Ruuge EK (1980) Electron spin resonance study of electron transport in photosynthetic systems. IX. Temperature dependence of the kinetics of P700 redox transients in bean chloroplasts induced by flashes with different duration. Molec Biol (Moscow) 14:157–172

    CAS  Google Scholar 

  • Tikhonov AN, Khomutov GB, Ruuge EK et al (1981) Electron transport control in chloroplasts. Effects of photosynthetic control monitored by the intrathylakoid pH. Biochim Biophys Acta 637:321–333

    Article  CAS  Google Scholar 

  • Tikhonov AN, Timoshin AA, Blumenfeld LA (1983) The kinetics of electron transport translocation of protons and photophosphorylation in chloroplasts and their relationship with the thermo-induced structural changes in the thylakoid membrane. Molec Biol (Moscow) 17:1236–1248

    Google Scholar 

  • Tikhonov AN, Khomutov GB, Ruuge EK (1984) Electron transport control in chloroplasts. Effects of magnesium ions on the electron flow between two photosystems. Photobiochem Photobiophys 8:261–269

    CAS  Google Scholar 

  • Tikkanen M, Aro E-M (2012) Thylakoid protein phosphorylation in dynamic regulation of photosystem II in higher plants. Biochim Biophys Acta 1817:232–238

    Article  CAS  PubMed  Google Scholar 

  • Tikkanen M, Grieco M, Nurmi M et al (2012) Regulation of the photosynthetic apparatus under fluctuating growth light. Philos Trans R Soc Lond B 367:3486–3493

    Article  CAS  Google Scholar 

  • Tremmel IG, Kirchhoff H, Weis E et al (2003) Dependence of plastoquinol diffusion on the shape, size, and density of integral thylakoid proteins. Biochim Biophis Acta 1603:97–109

    Article  CAS  Google Scholar 

  • Turina P, Petersen J, Gräber P (2016) Thermodynamics of proton transport coupled ATP synthesis. Biochim Biophys Acta 1857:653–664

    Article  CAS  PubMed  Google Scholar 

  • Vener AV, van Kan PJ, Rich PR et al (1997) Plastoquinol at the quinol oxidation site of reduced cytochrome bf mediates signal transduction between light and protein phosphorylation: Thylakoid protein kinase deactivation by a single-turnover flash. Proc Natl Acad Sci U S A 94:1585–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Victoria D, Burton R, Crofts AR (2013) Role of the –PEWY-glutamate in catalysis at the Qo-site of the Cyt bc 1 complex. Biochim Biophys Acta 1827:365–386

    Article  CAS  PubMed  Google Scholar 

  • Witt HT (1979) Energy conversion in the functional membrane of photosynthesis. Analysis by light pulse and electric pulse methods. The central role of the electric field. Biochim Biophys Acta 505:355–427

    Article  CAS  PubMed  Google Scholar 

  • Wood PM (1988) The potential diagram for oxygen at pH 7. Biochem J 253:287–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia D, C-A Y, Kim H et al (1997) Crystal structure of the cytochrome bc 1 complex from bovine heart mitochondria. Science 277:60–66

    Article  CAS  PubMed  Google Scholar 

  • Xia D, Esser L, Tang W-K et al (2013) Structural analysis of cytochrome bc 1 complexes: Implications to the mechanism of function. Biochim Biophys Acta 1827:1278–1294

    Article  CAS  PubMed  Google Scholar 

  • Yamashita E, Zhang H, Cramer WA (2007) Structure of the cytochrome b 6 f complex: Quinone analogue inhibitors as ligands of heme c n . J Mol Biol 370:39–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamori W, Shikanai T (2016) Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu Rev Plant Biol 67:81–106

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Cramer WA (2003) Functional insensitivity of the cytochrome b 6 f complex to structure changes in the hinge region of the Rieske iron–sulfur protein. J Biol Chem 278:20926–20933

    Google Scholar 

  • Zhang H, Carrell CJ, Huang D et al (1996) Characterization and crystallization of the lumen side domain of the chloroplast Rieske iron-sulfur protein. J Biol Chem 271:31360–31366

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Huang L, Shulmeister VM et al (1998) Electron transfer by domain movement in cytochrome bc 1. Nature 392:677–684

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Whitelegge JP, Cramer WA (2001) Ferredoxin: NADP+ oxidoreductase is a subunit of the chloroplast cytochrome b 6 f complex. J Biol Chem 276:38159–38165

    CAS  PubMed  Google Scholar 

  • Zhu J, Egawa T, Yeh S-R et al (2007) Simultaneous reduction of iron-sulfur protein and cytochrome b L during ubiquinol oxidation in cytochrome bc 1 complex. Proc Natl Acad Sci U S A 104:4864–4869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zito F, Finazzi G, Joliot P et al (1998) Glu78, from the conserved PEWY sequence of subunit IV, has a key function in the cytochrome b 6 f turnover. Biochemistry 37:10395–10403

    Article  CAS  PubMed  Google Scholar 

  • Zito F, Finazzi G, Delosme R et al (1999) The Qo site of cytochrome b 6 f complexes controls the activation of the LHCII kinase. EMBO J 18:2961–2969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zu Y, Manon M-J, Couture MM-J et al (2003) Reduction potentials of Rieske clusters: Importance of the coupling between oxidation state and histidine protonation state. Biochemistry 42:12400–12408

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Russian Foundation for Basic Research (RFBR Project 15-04-03790a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander N. Tikhonov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tikhonov, A.N. (2018). The Cytochrome b 6 f Complex: Biophysical Aspects of Its Functioning in Chloroplasts. In: Harris, J., Boekema, E. (eds) Membrane Protein Complexes: Structure and Function. Subcellular Biochemistry, vol 87. Springer, Singapore. https://doi.org/10.1007/978-981-10-7757-9_10

Download citation

Publish with us

Policies and ethics