Skip to main content

Sensing Using Microfluidic Platform

  • Chapter
  • First Online:
Environmental, Chemical and Medical Sensors

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Microfluidic devices have emerged as prevailing and reliable microscale total analysis devices that offer minimum reagent consumption, high throughput, and control of multiple processes in a single smallest device. This book chapter discusses about sensing on microfluidic platform, its flow physics, which is very important for microflow systems and its potential applications. It discusses about manufacture methods and materials used for microfluidic platform that effect the flow systems. Further, the droplet-based microfluidics, drop dynamics, as well as formation of droplet mechanism for handling of chemical and/or biological samples for its sensors application are discussed. The developed sensing using microfluidic platform can show a scaled solution for future analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adley CC (2014) Past, present and future of sensors in food production. Foods 3(3):491–510

    Article  Google Scholar 

  • ANSI (1975) Electrical transducer nomenclature and terminology. ANSI Standard MC6.1-1975 (ISA S37.1). Instrument Society of America, USA

    Google Scholar 

  • Attia UM, Alcock JR (2010) A process chain for integrating microfluidic interconnection elements by micro-overmoulding of thermoplastic elastomers. J Micromech Microeng 20(5):055017

    Article  Google Scholar 

  • Bai Y, Patil SN, Bowden SD, Poulter S, Pan J, Salmond GPC, Welch M, Huck WTS, Abell C (2013) Intra-species bacterial quorum sensing studied at single cell level in a double droplet trapping system. Int J Mol Sci 14(5):10570–10581

    Article  Google Scholar 

  • Becker H, Locascio LE (2002) Polymer microfluidic devices. Talanta 56(2):267–287

    Article  Google Scholar 

  • Bhattacharyya A, Klapperich CM (2006) Thermoplastic microfluidic device for on-chip purification of nucleic acids for disposable diagnostics. Anal Chem 78(3):788–792

    Article  Google Scholar 

  • Boettger LM, Handsaker RE, Zody MC, McCarroll SA (2012) Structural haplotypes and recent evolution of the human 17q21.31 region. Nat Genet 44(8):881–885

    Article  Google Scholar 

  • Busa L, Mohammadi S, Maeki M, Ishida A, Tani H, Tokeshi M (2016) Advances in microfluidic paper-based analytical devices for food and water analysis. Micromachines 7(5):86

    Article  Google Scholar 

  • Camara EHM, Pijolat C, Courbat J, Breuil P, Briand D, Rooij NFd (2007) Microfluidic channels in porous silicon filled with a carbon absorbent for GAS preconcentration. In: Transducers-2007 international solid-state sensors, actuators and microsystems conference, 10–14 June 2007, pp 249–252

    Google Scholar 

  • Chai F, Wang C, Wang T, Li L, Su Z (2010) Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS Appl Mater Interfaces 2(5):1466–1470

    Article  Google Scholar 

  • Chen R, Guo H, Shen Y, Hu Y, Sun Y (2006) Determination of EOF of PMMA microfluidic chip by indirect laser-induced fluorescence detection. Sens Actuators B Chem 114(2):1100–1107

    Article  Google Scholar 

  • Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102(1):29–45

    Article  Google Scholar 

  • Das T, Chakraborty S (2010) Bio-microfluidics: overview. In: Chakraborty S (ed) Microfluidics and microfabrication. Springer, Boston, pp 131–179

    Chapter  Google Scholar 

  • De Menech M, Garstecki P, Jousse F, Stone HA (2008) Transition from squeezing to dripping in a microfluidic T-shaped junction. J Fluid Mech 595:141–161

    Article  MATH  Google Scholar 

  • de Vargas IMP, Fay CD, Cleary J, Nightingale AM, Mowlem MC, Diamond D (2016) Autonomous reagent-based microfluidic pH sensor platform. Sens Actuators B Chem 225:369–376

    Article  Google Scholar 

  • Diepold T, Obermeier E (1996) Smoothing of ultrasonically drilled holes in borosilicate glass by wet chemical etching. J Micromech Microeng 6(1):29–32

    Article  Google Scholar 

  • Doll A, Wischke M, Schrag HJ, Geipel A, Goldschmidtboeing F, Woias P (2007) Characterization of active silicon microvalves with piezoelectric membrane actuators. Microelectron Eng 84(5):1202–1206

    Article  Google Scholar 

  • Faustino V, Catarino SO, Lima R, Minas G (2016) Biomedical microfluidic devices by using low-cost fabrication techniques: a review. J Biomech 49(11):2280–2292

    Article  Google Scholar 

  • Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab Chip 6(3):437–446

    Article  Google Scholar 

  • Ges IA, Ivanov BL, Schaffer DK, Lima EA, Werdich AA, Baudenbacher FJ (2005) Thin-film IrOx pH microelectrode for microfluidic-based microsystems. Biosens Bioelectron 21(2):248–256

    Article  Google Scholar 

  • Guo X, Kulkarni A, Doepke A, Halsall HB, Iyer S, Heineman WR (2012) Carbohydrate-based label-free detection of Escherichia coli ORN 178 using electrochemical impedance spectroscopy. Anal Chem 84(1):241–246

    Article  Google Scholar 

  • Hamblin MN, Edwards JM, Lee ML, Woolley AT, Hawkins AR (2007) Electroosmotic flow in vapor deposited silicon dioxide and nitride microchannels. Biomicrofluidics 1(3):034101

    Article  Google Scholar 

  • Henares TG, Mizutani F, Hisamoto H (2008) Current development in microfluidic immunosensing chip. Anal Chim Acta 611(1):17–30

    Article  Google Scholar 

  • Hong T-F, Ju W-J, Wu M-C, Tai C-H, Tsai C-H, Fu L-M (2010) Rapid prototyping of PMMA microfluidic chips utilizing a CO2 laser. Microfluid Nanofluid 9:1125–1133

    Article  Google Scholar 

  • Huebner A, Olguin LF, Bratton D, Whyte G, Huck WTS, de Mello AJ, Edel JB, Abell C, Hollfelder F (2008) Development of quantitative cell-based enzyme assays in microdroplets. Anal Chem 80(10):3890–3896

    Article  Google Scholar 

  • Iliescu C, Taylor H, Avram M, Miao J, Franssila S (2012) A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics 6(1):16505–1650516

    Article  Google Scholar 

  • Jang WI, Choi CA, Jun CH, Kim YT, Esashi M (2004) Surface micromachined thermally driven micropump. Sens Actuators A 115(1):151–158

    Article  Google Scholar 

  • Johnson WS (1883) Electric tele thermoscope. USA Patent 281884

    Google Scholar 

  • Kang S-W, Tsai S-H, Ko M-H (2004) Metallic micro heat pipe heat spreader fabrication. Appl Therm Eng 24(2):299–309

    Article  Google Scholar 

  • Khan Malek C, Robert L, Boy J-J, Blind P (2007) Deep microstructuring in glass for microfluidic applications. Microsyst Technol 13(5):447–453

    Article  Google Scholar 

  • Kim J, Junkin M, Kim D-H, Kwon S, Shin YS, Wong PK, Gale BK (2009) Applications, techniques, and microfluidic interfacing for nanoscale biosensing. Microfluid Nanofluid 7(2):149–167

    Article  Google Scholar 

  • Leester-Schädel M, Lorenz T, Jürgens F, Richter C (2016) Fabrication of microfluidic devices. In: Dietzel A (ed) Microsystems for pharmatechnology: manipulation of fluids, particles, droplets, and cells. Springer International Publishing, Cham, pp 23–57

    Chapter  Google Scholar 

  • Lin Y, Gritsenko D, Feng S, Teh YC, Lu X, Xu J (2016) Detection of heavy metal by paper-based microfluidics. Biosens Bioelectron 83:256–266

    Article  Google Scholar 

  • Luka G, Ahmadi A, Najjaran H, Alocilja E, DeRosa M, Wolthers K, Malki A, Aziz H, Althani A, Hoorfar M (2015) Microfluidics integrated biosensors: a leading technology towards lab-on-a-chip and sensing applications. Sensors 15(12):30011–30031

    Article  Google Scholar 

  • Ma J, Wang Y, Liu J (2017) Biomaterials meet microfluidics: from synthesis technologies to biological applications. Micromachines 8(8):255

    Article  Google Scholar 

  • Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens Actuators B Chem 1(1–6):244–248

    Article  Google Scholar 

  • Mathur A, Roy SS, Tweedie M, Mukhopadhyay S, Mitra SK, McLaughlin JA (2009) Characterisation of PMMA microfluidic channels and devices fabricated by hot embossing and sealed by direct bonding. Curr Appl Phys 9(6):1199–1202

    Article  Google Scholar 

  • Meyvantsson I, Beebe DJ (2008) Cell culture models in microfluidic systems. Ann Rev Anal Chem 1(1):423–449

    Article  Google Scholar 

  • Middelhoek S, Noorlag DJW, Steenvoorden GK (1983) Silicon and hybrid micro-electronic sensors. Electrocomponent Sci Technol 10(4):217–229

    Article  Google Scholar 

  • Najah M, Griffiths AD, Ryckelynck M (2012) Teaching single-cell digital analysis using droplet-based microfluidics. Anal Chem 84(3):1202–1209

    Article  Google Scholar 

  • Narsaiah K, Jha SN, Bhardwaj R, Sharma R, Kumar R (2012) Optical biosensors for food quality and safety assurance—a review. J Food Sci Technol 49(4):383–406

    Article  Google Scholar 

  • Nath P, Arun RK, Chanda N (2014) A paper based microfluidic device for the detection of arsenic using a gold nanosensor. RSC Adv 4(103):59558–59561

    Article  Google Scholar 

  • Nath P, Arun RK, Chanda N (2015) Smart gold nanosensor for easy sensing of lead and copper ions in solution and using paper strips. RSC Adv 5(84):69024–69031

    Article  Google Scholar 

  • Nisisako T, Torii T, Higuchi T (2002) Droplet formation in a microchannel network. Lab Chip 2(1):24–26

    Article  Google Scholar 

  • Petersen KE (1982) Silicon as a mechanical material. Proc IEEE 70(5):420–457

    Article  Google Scholar 

  • Pradeep HN, Nayak CA (2016) Microencapsulation of C-phycocyanin by microfluidics. In: Regupathi I, Shetty KV, Thanabalan M (eds) Recent advances in chemical engineering: select proceedings of ICACE 2015. Springer Singapore, Singapore, pp 89–95

    Google Scholar 

  • Rackus DG, Shamsi MH, Wheeler AR (2015) Electrochemistry, biosensors and microfluidics: a convergence of fields. Chem Soc Rev 44(15):5320–5340

    Article  Google Scholar 

  • Rérolle VMC, Floquet CFA, Harris AJK, Mowlem MC, Bellerby RRGJ, Achterberg EP (2013) Development of a colorimetric microfluidic pH sensor for autonomous seawater measurements. Anal Chim Acta 786:124–131

    Article  Google Scholar 

  • Riahi R, Tamayol A, Shaegh SAM, Ghaemmaghami AM, Dokmeci MR, Khademhosseini A (2015) Microfluidics for advanced drug delivery systems. Curr Opin Chem Eng 7:101–112

    Article  Google Scholar 

  • Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507(7491):181–189

    Article  Google Scholar 

  • Saem S, Zhu Y, Luu H, Moran-Mirabal J (2017) Bench-top fabrication of an all-PDMS microfluidic electrochemical cell sensor integrating micro/nanostructured electrodes. Sensors 17(4):732

    Article  Google Scholar 

  • Satoh W, Hosono H, Yokomaku H, Morimoto K, Upadhyay S, Suzuki H (2008) Integrated electrochemical analysis system with microfluidic and sensing functions. Sensors 8(2):1111–1127

    Article  Google Scholar 

  • Sharma S, Srisa-Art M, Scott S, Asthana A, Cass A (2013) Droplet-based microfluidics. Methods Mol Biol 949:207–230

    Article  Google Scholar 

  • Skurtys O, Aguilera JM (2008) Applications of microfluidic devices in food engineering. Food Biophys 3(1):1–15

    Article  Google Scholar 

  • Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidic channels. Angew Chem Int Ed Engl 45(44):7336–7356

    Article  Google Scholar 

  • Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977–1026

    Article  Google Scholar 

  • Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in smal devices. Annu Rev Fluid Mech 36(1):381–411

    Article  MATH  Google Scholar 

  • Streets AM, Huang Y (2013) Chip in a lab: microfluidics for next generation life science research. Biomicrofluidics 7(1):011302

    Article  Google Scholar 

  • Streets AM, Huang Y (2014) Microfluidics for biological measurements with single-molecule resolution. Curr Opin Biotechnol 25:69–77

    Article  Google Scholar 

  • Sun Y, Kwok YC, Foo-Peng Lee P, Nguyen NT (2009) Rapid amplification of genetically modified organisms using a circular ferrofluid-driven PCR microchip. Anal Bioanal Chem 394(5):1505–1508

    Article  Google Scholar 

  • Tewhey R, Warner JB, Nakano M, Libby B, Medkova M, David PH, Kotsopoulos SK, Samuels ML, Hutchison JB, Larson JW, Topol EJ, Weiner MP, Harismendy O, Olson J, Link DR, Frazer KA (2009) Microdroplet-based PCR enrichment for large-scale targeted sequencing. Nat Biotech 27(11):1025–1031

    Article  Google Scholar 

  • Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86(18):4163–4166

    Article  Google Scholar 

  • Wang J, Ren L, Li L, Liu W, Zhou J, Yu W, Tong D, Chen S (2009) Microfluidics: a new cosset for neurobiology. Lab Chip 9(5):644–652

    Google Scholar 

  • Wang B, Prinsen P, Wang H, Bai Z, Wang H, Luque R, Xuan J (2017a) Macroporous materials: microfluidic fabrication, functionalization and applications. Chem Soc Rev 46(3):855–914

    Article  Google Scholar 

  • Wang J, Eijkel JCT, Jin M, Xie S, Yuan D, Zhou G, van den Berg A, Shui L (2017b) Microfluidic fabrication of responsive hierarchical microscale particles from macroscale materials and nanoscale particles. Sens Actuators B Chem 247:78–91

    Article  Google Scholar 

  • White RM (1987) A sensor classification scheme. IEEE Trans Ultrason Ferroelectr Freq Control 34(2):124–126

    Article  MathSciNet  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373

    Article  Google Scholar 

  • Wilson D, Stenzenberger HD, Hergenrother PM (eds) (1990) Polyimides. Chapman and Hall, New York

    Google Scholar 

  • Yang L, Li Y, Griffis CL, Johnson MG (2004) Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium. Biosens Bioelectron 19(10):1139–1147

    Article  Google Scholar 

  • Yeo LY, Chang H-C, Chan PPY, Friend JR (2011) Microfluidic devices for bioapplications. Small 7(1):12–48

    Article  Google Scholar 

  • Yin H, Killeen K, Brennen R, Sobek D, Werlich M, van de Goor T (2005) Microfluidic chip for peptide analysis with an integrated HPLC column, sample enrichment column, and nanoelectrospray tip. Anal Chem 77(2):527–533

    Article  Google Scholar 

  • Yoon J-Y, Kim B (2012) Lab-on-a-chip pathogen sensors for food safety. Sensors 12(8):10713–10741

    Article  Google Scholar 

  • Zhu Y, Fang Q (2013) Analytical detection techniques for droplet microfluidics—a review. Anal Chim Acta 787:24–35

    Article  Google Scholar 

  • Zhu P, Wang L (2017) Passive and active droplet generation with microfluidics: a review. Lab Chip 17(1):34–75

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. G. N. Rameshaiah, Head, Department of Chemical Engineering, B.M.S. College of Engineering, Bengaluru, and Dr. Ravishankar R., Head, Department of Chemical Engineering, Dayananda Sagar College of Engineering, Bengaluru, for constant encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chetan A. Nayak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nayak, C.A., Pradeep, H.N. (2018). Sensing Using Microfluidic Platform. In: Bhattacharya, S., Agarwal, A., Chanda, N., Pandey, A., Sen, A. (eds) Environmental, Chemical and Medical Sensors. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7751-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7751-7_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7750-0

  • Online ISBN: 978-981-10-7751-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics