Skip to main content

Designing of a Low-Cost Optical Density Meter for Medical Applications

  • Chapter
  • First Online:
Environmental, Chemical and Medical Sensors

Abstract

Detection of analytes (biological markers) is an important process for the confirmation of some disease and/or overdose of drugs. Without the detection of the analytes, the treatment of the patients cannot be initiated immediately. In this regard, various detection methodologies have been proposed. One such method is the colorimetric estimation of the analytes. This chapter discusses the advancements made in the field of devising of instruments for colorimetric estimation. Keeping a view of above, a case study to device a low-cost colorimetric instrument, capable of measuring the optical density (OD) of a solution, has also been reported. The suitability of the developed device for estimating rhodamin-B dye and potassium indigo sulphate and salicylic acid was ascertained by making a standard curve plot. The results suggested that the developed device can be used with great efficiency in estimating analytes by colorimetric assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albisser AM, Leibel B, Ewart T, Davidovac Z, Botz C, Zingg W, Schipper H, Gander R (1974) Clinical control of diabetes by the artificial pancreas. Diabetes 23(5):397–404

    Article  Google Scholar 

  • Allen S, Adjani A (2016) Therapeutic device and method. Google Patents

    Google Scholar 

  • Beach J (1997) A LED light calibration source for dual-wavelength microscopy. Cell Calcium 21(1):63–68

    Article  Google Scholar 

  • Bhutta MR, Hong K-S, Kim B-M, Hong MJ, Kim Y-H, Lee S-H (2014) Note: three wavelengths near-infrared spectroscopy system for compensating the light absorbance by water. Rev Sci Instrum 85(2):026111

    Article  Google Scholar 

  • Breton M, Farret A, Bruttomesso D, Anderson S, Magni L, Patek S, Dalla Man C, Place J, Demartini S, Del Favero S (2012) Fully integrated artificial pancreas in type 1 diabetes. Diabetes 61(9):2230–2237

    Article  Google Scholar 

  • Cetin AE, Coskun AF, Galarreta BC, Huang M, Herman D, Ozcan A, Altug H (2014) Handheld high-throughput plasmonic biosensor using computational on-chip imaging. Light Sci Appl 3(1):e122

    Google Scholar 

  • Chen S-J, Chen M-J, Chang H-T (2003) Light-emitting diode-based indirect fluorescence detection for simultaneous determination of anions and cations in capillary electrophoresis. J Chromatogr A 1017(1):215–224

    Article  Google Scholar 

  • Clippard CM, Hughes W, Chohan BS, Sykes DG (2016) Construction and characterization of a compact, portable, low-cost colorimeter for the chemistry lab. J Chem Educ 93(7):1241–1248

    Article  Google Scholar 

  • Dasgupta PK, Eom I-Y, Morris KJ, Li J (2003) Light emitting diode-based detectors: absorbance, fluorescence and spectroelectrochemical measurements in a planar flow-through cell. Anal Chim Acta 500(1):337–364

    Article  Google Scholar 

  • dos Santos SRB, de Araújo MCU, Barbosa RA (2002) An automated FIA system to determine alcoholic grade in beverages based on Schlieren effect measurements using an LED-photocolorimeter. Analyst 127(2):324–327

    Article  Google Scholar 

  • Dutse SW, Yusof NA (2011) Microfluidics-based lab-on-chip systems in DNA-based biosensing: an overview. Sensors 11(6):5754–5768

    Article  Google Scholar 

  • Eom I-Y, Dasgupta PK (2006) Frequency-selective absorbance detection: refractive index and turbidity compensation with dual-wavelength measurement. Talanta 69(4):906–913

    Article  Google Scholar 

  • Fonseca A, Raimundo IM (2004) A multichannel photometer based on an array of light emitting diodes for use in multivariate calibration. Anal Chim Acta 522(2):223–229

    Article  Google Scholar 

  • Fonseca A, Raimundo IM (2007) A simple method for water discrimination based on an light emitting diode (LED) photometer. Anal Chim Acta 596(1):66–72

    Article  Google Scholar 

  • Gros N (2005) A new type of a spectrometric microtitration set up. Talanta 65(4):907–912

    Article  MathSciNet  Google Scholar 

  • Gros N (2007) A novel type of tri-colour light-emitting-diode-based spectrometric detector for low-budget flow-injection analysis. Sensors 7(2):166–184

    Article  Google Scholar 

  • Hauser PC, Rupasinghe TW, Cates NE (1995) A multi-wavelength photometer based on light-emitting diodes. Talanta 42(4):605–612

    Article  Google Scholar 

  • Held G (2016) Introduction to light emitting diode technology and applications. CRC Press, Boca Raton

    Google Scholar 

  • Ho CK, Robinson A, Miller DR, Davis MJ (2005) Overview of sensors and needs for environmental monitoring. Sensors 5(1):4–37

    Article  Google Scholar 

  • Hoinkis M, Yan C, Miyazoe H, Joseph E (2015) Copper residue chamber clean. Google Patents

    Google Scholar 

  • Huang J, Liu H, Tan A, Xu J, Zhao X (1992) A dual-wavelength light-emitting diode based detector for flow-injection analysis process analysers. Talanta 39(6):589–592

    Article  Google Scholar 

  • Ita K (2016) Transdermal iontophoretic drug delivery: advances and challenges. J Drug Target 24(5):386–391

    Article  Google Scholar 

  • Kalyani V, Arya A (2014) Design and simulation of VFA and CFA based integrator and differentiator using NI multisim and their comparison. Int J Adv Res Electron Commun Eng (IJARECE) 3

    Google Scholar 

  • Kawamura K, Ishiyama M, Nagatani N, Hashiba T, Tamiya E (2006) Development of a novel hand-held toluene gas sensor: possible use in the prevention and control of sick building syndrome. Measurement 39(6):490–496

    Article  Google Scholar 

  • Kim EM, Schubert TF Jr (2016) A low-cost design experience for junior-level electronics circuits laboratories through emulation of industry-printed circuit board design practice. Int J Electr Eng Edu:0020720916673650

    Google Scholar 

  • Kim H-K, Cho S-H, Chil-Woo K, Chung Y-K, Going-Sik K (2016) Printed circuit board. Google Patents

    Google Scholar 

  • Kittipanyangam S, Abe K, Eguchi K (2013) Design of a measurement device explaining the relationship between the concentration of solution and the light absorbance for chemical education. In: 2016 13th international conference on electrical engineering/electronics, computer, telecommunications and information technology (ECTI-CON), pp 1–6, 28 June 2016–1 July 2016. doi:https://doi.org/10.1109/ECTICon.2016.7561271

  • Konieczka P, Namiesnik J (2016) Quality assurance and quality control in the analytical chemical laboratory: a practical approach. CRC Press, Baco Raton

    Google Scholar 

  • Kuswandi B, Huskens J, Verboom W (2007) Optical sensing systems for microfluidic devices: a review. Anal Chim Acta 601(2):141–155

    Article  Google Scholar 

  • Lau K-T, Baldwin S, O’Toole M, Shepherd R, Yerazunis WJ, Izuo S, Ueyama S, Diamond D (2006) A low-cost optical sensing device based on paired emitter–detector light emitting diodes. Anal Chim Acta 557(1):111–116

    Article  Google Scholar 

  • Lau KT, Baldwin S, Shepherd RL, Dietz PH, Yerzunis WS, Diamond D (2004) Novel fused-LEDs devices as optical sensors for colorimetric analysis. Talanta 63(1):167–173

    Article  Google Scholar 

  • Lee R, Aldis D, Garrett D, Lai F (1982) Improved diagnostics for determination of minimum explosive concentration, ignition energy and ignition temperature of dusts. Powder Technol 31(1):51–62

    Article  Google Scholar 

  • Lent CS (2013) Learning to program with MATLAB. Wiley, Hoboken

    Google Scholar 

  • Liedtke S, Loerwald D (2014) Diagnostic device. Google Patents

    Google Scholar 

  • Liu H, Dasgupta PK (1994) Dual-wavelength photometry with light emitting diodes. Compensation of refractive index and turbidity effects in flow-injection analysis. Anal Chim Acta 289(3):347–353

    Article  Google Scholar 

  • Liu R-T, Tao L-Q, Liu B, Tian X-G, Mohammad MA, Yang Y, Ren T-L (2016) A miniaturized on-chip colorimeter for detecting NPK elements. Sensors 16(8):1234

    Article  Google Scholar 

  • Marle L, Greenway GM (2005) Microfluidic devices for environmental monitoring. TrAC Trends Anal Chem 24(9):795–802

    Article  Google Scholar 

  • McClure SR, Banko JD, Ternus JP (2014) Printed circuit board. Google Patents

    Google Scholar 

  • McPherson RA, Pincus MR (2016) Henry’s clinical diagnosis and management by laboratory methods. Elsevier Health Sciences, Amsterdam

    Google Scholar 

  • Mitrani AA, Gonzalez ML, O’Connell MT, Guerra J, Harwood RB, Gardner LB (1991) Detection of clinically suspected deep vein thrombosis using light reflection rheography. Am J Surg 161(6):646–650

    Article  Google Scholar 

  • O’Toole M, Diamond D (2008) Absorbance based light emitting diode optical sensors and sensing devices. Sensors 8(4):2453–2479

    Article  Google Scholar 

  • O’Toole M, Lau KT, Diamond D (2005) Photometric detection in flow analysis systems using integrated PEDDs. Talanta 66(5):1340–1344

    Article  Google Scholar 

  • Pacquit A, Frisby J, Diamond D, Lau KT, Farrell A, Quilty B, Diamond D (2007) Development of a smart packaging for the monitoring of fish spoilage. Food Chem 102(2):466–470

    Article  Google Scholar 

  • Pacquit A, Lau KT, McLaughlin H, Frisby J, Quilty B, Diamond D (2006) Development of a volatile amine sensor for the monitoring of fish spoilage. Talanta 69(2):515–520

    Article  Google Scholar 

  • Pamula V, Srinivasan V, Chakrapani H, Fair R, Toone E (2005) A droplet-based lab-on-a-chip for colorimetric detection of nitroaromatic explosives. In: 18th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2005), IEEE, pp 722–725

    Google Scholar 

  • Pinto JJ, Moreno C, Garcı́a-Vargas M (2004) A very sensitive flow system for the direct determination of copper in natural waters based on spectrophotometric detection. Talanta 64 (2):562–565. doi:https://doi.org/10.1016/j.talanta.2004.03.009

  • Poole I (2014) Light dependent resistor, photo resistor, or photocell. Radio-Electronics com

    Google Scholar 

  • Raj JR, Rahman S, Anand S (2016) Microcontroller USB interfacing with MATLAB GUI for low cost medical ultrasound scanners. Eng Sci Technol Int J 19(2):964–969

    Article  Google Scholar 

  • Sanderson JE, Deriel SR (1988) Method and apparatus for iontophoretic drug delivery. Google Patents

    Google Scholar 

  • Schwarz MA, Hauser PC (2001) Recent developments in detection methods for microfabricated analytical devices. Lab Chip 1(1):1–6

    Article  Google Scholar 

  • Sequeira M, Bowden M, Minogue E, Diamond D (2002) Towards autonomous environmental monitoring systems. Talanta 56(2):355–363

    Article  Google Scholar 

  • Shen MJ, Zipes DP (2014) Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res 114(6):1004–1021

    Article  Google Scholar 

  • Shih R (2014) Introduction to finite element analysis using solidworks simulation 2014. SDC publications

    Google Scholar 

  • Smiddy M, Papkovskaia N, Papkovsky D, Kerry J (2002) Use of oxygen sensors for the non-destructive measurement of the oxygen content in modified atmosphere and vacuum packs of cooked chicken patties; impact of oxygen content on lipid oxidation. Food Res Int 35(6):577–584

    Article  Google Scholar 

  • Sorouraddin M, Saadati M (2010) Determination of copper in urine and water samples using a simple led-based colorimeter. J Anal Chem 65(4):423–428

    Article  Google Scholar 

  • Strijbosch LW, Does RJ, Buurman WA (1988) Computer aided design and evaluation of limiting and serial dilution experiments. Int J Biomed Comput 23(3–4):279–290

    Article  Google Scholar 

  • Sumriddetchkajorn S, Chaitavon K, Intaravanne Y (2014) Mobile-platform based colorimeter for monitoring chlorine concentration in water. Sens Actuators B Chem 191:561–566

    Article  Google Scholar 

  • Suovaniemi OA (1984) Set of cuvettes. Google Patents

    Google Scholar 

  • Suzuki A, Kondoh J, Matsui Y, Shiokawa S, Suzuki K (2005) Development of novel optical waveguide surface plasmon resonance (SPR) sensor with dual light emitting diodes. Sens Actuators B Chem 106(1):383–387

    Article  Google Scholar 

  • Swisher SL, Lin MC, Liao A, Leeflang EJ, Khan Y, Pavinatto FJ, Mann K, Naujokas A, Young D, Roy S, Harrison MR, Arias AC, Subramanian V, Maharbiz MM (2015) Impedance sensing device enables early detection of pressure ulcers in vivo. Nat Commun 6:6575. doi:https://doi.org/10.1038/ncomms7575. https://www.nature.com/articles/ncomms7575#supplementary-information

  • Teshima N, Li J, Toda K, Dasgupta PK (2005) Determination of acetone in breath. Anal Chim Acta 535(1):189–199

    Article  Google Scholar 

  • Tothill IE (2009) Biosensors for cancer markers diagnosis. In: Seminars in cell & developmental biology, vol 1. Elsevier, Amsterdam, pp 55–62

    Google Scholar 

  • Tran P (2016) Solidworks 2016 Advanced Techniques. SDC Publications

    Google Scholar 

  • Tubino M, Queiroz CA (2007) Flow injection visible diffuse reflectance quantitative analysis of nickel. Anal Chim Acta 600(1):199–204

    Article  Google Scholar 

  • Uludag Y, Tothill IE (2012) Cancer biomarker detection in serum samples using surface plasmon resonance and quartz crystal microbalance sensors with nanoparticle signal amplification. Anal Chem 84(14):5898–5904

    Article  Google Scholar 

  • Watkins AN, Wenner BR, Jordan JD, Xu W, Demas JN, Bright FV (1998) Portable, low-cost, solid-state luminescence-based O2 sensor. Appl Spectrosc 52(5):750–754

    Article  Google Scholar 

  • Worsfold PJ, Clinch JR, Casey H (1987) Spectrophotometric field monitor for water quality parameters: the determination of phosphate. Anal Chim Acta 197:43–50

    Article  Google Scholar 

  • Yeh P, Yeh N, Lee C-H, Ding T-J (2016) Applications of LEDs in optical sensors and chemical sensing device for detection of biochemicals, heavy metals, and environmental nutrients. Renew Sustain Energy Rev 75:461–468

    Google Scholar 

  • Zagatto E, Arruda M, Jacintho A, Mattos I (1990) Compensation of the Schlieren effect in flow-injection analysis by using dual-wavelength spectrophotometry. Anal Chim Acta 234:153–160

    Article  Google Scholar 

  • Zhi LL, Zaini MAA (2017) Adsorption properties of cationic rhodamine B dye onto metals chloride-activated castor bean residue carbons. Water Sci Technol 75(4):864–880

    Article  Google Scholar 

  • Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and adaptive procedure for practical engineerng analysis. Int J Numer Meth Eng 24(2):337–357

    Article  MATH  Google Scholar 

  • Zuotao Z, McCreedy T, Townshend A (1999) Flow-injection spectrophotometric determination of gold using 5-(4-sulphophenylazo)-8-aminoquinoline. Analytica Chimica Acta 401(1–2):237–241. doi:https://doi.org/10.1016/S0003-2670(99)00498-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, A. et al. (2018). Designing of a Low-Cost Optical Density Meter for Medical Applications. In: Bhattacharya, S., Agarwal, A., Chanda, N., Pandey, A., Sen, A. (eds) Environmental, Chemical and Medical Sensors. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7751-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7751-7_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7750-0

  • Online ISBN: 978-981-10-7751-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics