Skip to main content

The Origin of the Solar Wind

  • Chapter
  • First Online:
Book cover First Ten Years of Hinode Solar On-Orbit Observatory

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 449))

  • 622 Accesses

Abstract

The source regions of the solar wind, and its driver and acceleration mechanism, remain key topics of study in heliophysics. With its combination of high sensitivity and high spatial resolution measurements of Doppler flows, mass motions, and plasma composition, the Hinode satellite is uniquely equipped to investigate many of these issues. On the occasion of the tenth anniversary of the launch of Hinode, we here briefly review some of the scientific highlights on this subject from the mission over the last decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brooks, D.H., Warren, H.P.: Establishing a connection between active region outflows and the solar wind: abundance measurements with EIS/Hinode. Astrophys. J. Lett. 727, L13–L17 (2011)

    Article  ADS  Google Scholar 

  • Brooks, D.H., Warren, H.P.: The coronal source of extreme-ultraviolet line profile asymmetries in solar active region outflows. Astrophys. J. Lett. 760, L5–L10 (2012)

    Article  ADS  Google Scholar 

  • Brooks, D.H., et al.: Full-sun observations for identifying the source of the slow solar wind. Nat. Commun. 6, 5947 (2015). https://doi.org/10.1038/ncomms6947

    Article  Google Scholar 

  • Bryans, P., et al.: Multiple component outflows in an active region observed with the EUV imaging spectrometer on Hinode. Astrophys. J. 715, 1012–1020 (2010)

    Article  ADS  Google Scholar 

  • Cirtain, J.W., et al.: Evidence for Alfvén waves in solar X-ray jets. Science 318, 1580 (2007). https://doi.org/10.1126/science.1147050

    Article  ADS  Google Scholar 

  • Culhane, J.L., et al.: Tracking solar active region outflow plasma from its source to the near-Earth environment. Sol. Phys. 289, 3799–3816 (2014)

    Article  ADS  Google Scholar 

  • Del Zanna, G.: Flows in active region loops observed by Hinode EIS. Astron. Astrophys. 481, L49–L52 (2008)

    Article  ADS  Google Scholar 

  • Del Zanna, G., et al.: A single picture for solar coronal outflows and radio noise storms. Astron. Astrophys. 526, 137–148 (2011)

    Article  Google Scholar 

  • Doschek, G., et al.: Flows and nonthermal velocities in solar active regions observed with the EUV imaging spectrometer on Hinode: a tracer of active region sources of heliospheric magnetic fields? Astrophys. J. 686, 1362–1371 (2008)

    Article  ADS  Google Scholar 

  • Edwards, S.J., et al.: A comparison of global magnetic field skeletons and active-region upflows. Sol. Phys. 291, 117–142 (2016)

    Article  ADS  Google Scholar 

  • Feldman, U., Widing, K.G.: Elemental abundances in the solar upper atmosphere derived by spectroscopic means. Space Sci. Rev. 107, 665–720 (2003)

    Article  ADS  Google Scholar 

  • Feldman, U., et al.: On the sources of fast and slow solar wind. J. Geophys. Res. 110, A07109 (2005). https://doi.org/10.1029/2004JA010918

    ADS  Google Scholar 

  • Geiss, G., et al.: Origin of the solar wind from composition data. Space Sci. Rev. 72, 49–60, (1995)

    Article  ADS  Google Scholar 

  • Guennou, C., et al.: Relative abundance measurements in plumes and interplumes. Astrophys. J. 807, 145–158 (2015)

    Article  ADS  Google Scholar 

  • Hara, H., et al.: Coronal plasma motions near footpoints of active region loops revealed from spectroscopic observations with Hinode EIS. Astrophys. J. Lett. 678, L67–L71 (2008)

    Article  ADS  Google Scholar 

  • Harra, L.K., et al.: Outflows at the edges of active regions: contribution to solar wind formation? Astrophys. J. Lett. 676, L147–L150 (2008)

    Article  ADS  Google Scholar 

  • Imada, S., et al.: Magnetic reconnection in non-equilibrium ionization plasma. Astrophys. J. 742, 70–80 (2011a)

    Article  ADS  Google Scholar 

  • Imada, S., et al.: One-dimensional modeling for temperature-dependent upflow in the dimming region observed by Hinode/EUV imaging spectrometer. Astrophys. J. 743, 57–67 (2011b)

    Article  ADS  Google Scholar 

  • Lee, K.-S., et al.: Photospheric abundances of polar jets on the Sun observed by Hinode. Astrophys. J. 809, 114–122 (2015)

    Article  ADS  Google Scholar 

  • Mandrini, C., et al.: Topological analysis of emerging bipole clusters producing violent solar events. Sol. Phys. 289, 2041–2071 (2014)

    Article  ADS  Google Scholar 

  • Mariska, J.T., et al.: Solar transition region response to variations in the heating rate. Astrophys. J. 255, 783–796 (1982)

    Article  ADS  Google Scholar 

  • Muller, D., et al.: Solar orbiter. Exploring the Sun-heliosphere connection. Sol. Phys. 285, 25–70 (2013)

    Google Scholar 

  • Ofman, L., Davila, J.M.: Solar wind acceleration by large-amplitude nonlinear waves: parametric study. J. Geophys. Res. 103, 23677 (1998). https://doi.org/10.1029/98JA01996

    Article  ADS  Google Scholar 

  • Ofman, L., Davila, J.M.: Three-fluid 2.5-dimensional magnetohydrodynamic model of the effective temperature in coronal holes. Astrophys. J. 553, 935–940 (2001)

    Google Scholar 

  • Parker, E.N.: Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664–676 (1958)

    Article  ADS  Google Scholar 

  • Sakao, T., et al.: Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind. Science 318, 1585 (2007). https://doi.org/10.1126/science.1147292

    Article  ADS  Google Scholar 

  • Shibata, K., et al.: Observations of X-ray jets with the YOHKOH soft X-ray telescope. Pub. Astron. Soc. Jpn. 44, L173–L179 (1992)

    ADS  Google Scholar 

  • Sterling, A.C., et al.: Small-scale filament eruptions as the driver of X-ray jets in solar coronal holes. Nature 523, 437–440 (2015). https://doi.org/10.1038/nature14556

    Article  ADS  Google Scholar 

  • Suzuki, T.K., Inutsuka, S.-I.: Making the corona and the fast solar wind: a self-consistent simulation for the low-frequency Alfvén waves from the photosphere to 0.3 AU. Astrophys. J. Lett. 632, L49–L52 (2005)

    Google Scholar 

  • Teriaca, L., et al.: LEMUR: large European module for solar ultraviolet research. European contribution to JAXA’s solar-C mission. Exp. Astron. 34, 273–309 (2012)

    Google Scholar 

  • von Steiger, R., et al.: Composition of quasi-stationary solar wind flows from Ulyssessolar wind ion composition spectrometer. J. Geophys. Res. 105, 27217 (2000). https://doi.org/10.1029/1999JA000358

    Article  ADS  Google Scholar 

  • Widing, K.G., Feldman, U.: On the rate of abundance modifications versus time in active region plasmas. Astrophys. J. 555, 426–434 (2001)

    Article  ADS  Google Scholar 

  • Wilhelm, K., Bodmer, R.: Solar EUV and UV emission line observations above a polar coronal hole. Space Sci. Rev. 85, 371–378 (1998)

    Article  ADS  Google Scholar 

  • Young, P.R., et al.: Temperature and density in a polar plume – measurements from CDS/SOHO. Astron. Astrophys. 350, 286–301 (1999)

    ADS  Google Scholar 

Download references

Acknowledgements

Figure 1 taken from Figure 6 in Teriaca et al. (2012). Figure 2 adapted from the original Figures 1 & 3 in Lee et al. (2015). Figure 3 adapted from the original Figures 6 and 8 in Brooks et al. (2015). Courtesy of Nature under Creative Commons Attribution 4.0 International license.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung-Sun Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, KS., Brooks, D.H., Imada, S. (2018). The Origin of the Solar Wind. In: Shimizu, T., Imada, S., Kubo, M. (eds) First Ten Years of Hinode Solar On-Orbit Observatory. Astrophysics and Space Science Library, vol 449. Springer, Singapore. https://doi.org/10.1007/978-981-10-7742-5_9

Download citation

Publish with us

Policies and ethics