Hinode Investigations of Microflares and Nanoflares

  • Shin-nosuke Ishikawa
Part of the Astrophysics and Space Science Library book series (ASSL, volume 449)


Microflares and nanoflares are small energy release phenomena in the Sun. As their occurrence rate is high, these events may contribute to the heating of the solar atmosphere. The three instruments onboard the Hinode satellite enable us to investigate the physical processes and measure the energy releases of microflares and nanoflares. Based on the Hinode observations, some of the events can be explained by magnetic reconnection, particle acceleration, and chromospheric evaporation, similar to those for large flares. By precise differential emission measure estimations with multiwavelength observations, it is now possible to investigate the signatures of smaller flares with no individual flare detection.


Sun: corona Sun: flares Sun: X-rays Sun: UV radiation 


  1. Antolin, P., et al.: Predicting observational signatures of coronal heating by Alfvén waves and nanoflares. Astrophys. J. 688, 669–682 (2008)ADSCrossRefGoogle Scholar
  2. Brosius, J.W.: Rapid evolution of the solar atmosphere during the impulsive phase of a microflare observed with the extreme-ultraviolet imaging spectrometer aboard Hinode: hints of chromospheric magnetic reconnection. Astrophys. J. 777, 135 (2013)ADSCrossRefGoogle Scholar
  3. Brosius, J.W., et al.: Pervasive faint Fe XIX emission from a solar active region observed with EUNIS-13: evidence for nanoflare heating. Astrophys. J. 790, 112 (2014)ADSCrossRefGoogle Scholar
  4. Chen, F., Ding, M.D.: Evidence of explosive evaporation in a microflare observed by Hinode/EIS. Astrophys. J. 724, 640–648 (2010)ADSCrossRefGoogle Scholar
  5. Chifor, C., et al.: An active region jet observed with Hinode. Astron. Astrophys. 481, L57–L60 (2008a)ADSCrossRefGoogle Scholar
  6. Chifor, C., et al.: Magnetic flux cancellation associated with a recurring solar jet observed with Hinode, RHESSI, and STEREO/EUVI. Astron. Astrophys. 491, 279–288 (2008b)ADSCrossRefGoogle Scholar
  7. Christe, S., et al.: RHESSI microflare statistics. I. Flare-finding and frequency distributions. Astrophys. J. 677, 1385–1394 (2008)CrossRefGoogle Scholar
  8. Cirtain, J.W., et al.: Evidence for Alfvén waves in solar X-ray jets. Science 318, 1580 (2007)ADSCrossRefGoogle Scholar
  9. Cirtain, J.W., et al.: Energy release in the solar corona from spatially resolved magnetic braids. Nature 493, 501 (2013)ADSCrossRefGoogle Scholar
  10. Hannah, I.G., et al.: Microflares and the statistics of X-ray flares. Space Sci. Rev. 159, 263–300 (2011)ADSCrossRefGoogle Scholar
  11. Hannah, I.G., et al.: The first X-ray imaging spectroscopy of quiescent solar active regions with NuSTAR. Astrophys. J. 820, L14 (2016)ADSCrossRefGoogle Scholar
  12. Ishikawa, S., et al.: Constraining hot plasma in a non-flaring solar active region with FOXSI hard X-ray observations. Publ. Astron. Soc. Jpn. 66, S15 (2014)CrossRefGoogle Scholar
  13. Ishikawa, S. et al.: Detection of nanoflare-heated plasma in the solar corona by the FOXSI-2 sounding rocket. Nat. Astron. 1, 771 (2017)ADSCrossRefGoogle Scholar
  14. Kamio, S., et al.: Evolution of microflares associated with bright points in coronal holes and in quiet regions. Astron. Astrophys. 529, A21 (2011)CrossRefGoogle Scholar
  15. Kano, R., et al.: Hinode observation of photospheric magnetic activities triggering X-ray microflares around a well-developed Sunspot. Astrophys. J. 720, 1136–1145 (2010)ADSCrossRefGoogle Scholar
  16. Katsukawa, Y.: Spatial and temporal extent of solar nanoflares and their energy range. Publ. Astron. Soc. Jpn. 55, 1025–1031 (2003)ADSCrossRefGoogle Scholar
  17. Katsukawa, Y., Tsuneta, S.: Small fluctuation of coronal X-ray intensity and a signature of nanoflares. Astrophys. J. 557, 343–350 (2001)ADSCrossRefGoogle Scholar
  18. Klimchuk, J.A., et al.: Highly efficient modeling of dynamic coronal loops. Astrophys. J. 682, 1351–1362 (2008)ADSCrossRefGoogle Scholar
  19. Krucker, S., et al.: First images from the focusing optics X-ray solar imager. Astrophys. J. 793, L32 (2014)ADSCrossRefGoogle Scholar
  20. Kubo, M., et al.: Hinode observations of a vector magnetic field change associated with a flare on 2006 December 13. Publ. Astron. Soc. Jpn. 59, S779–S784 (2007)CrossRefGoogle Scholar
  21. Milligan, R.O.: A hot microflare observed with RHESSI and Hinode. Astrophys. J. 680, L157 (2008)ADSCrossRefGoogle Scholar
  22. Narukage, N., et al.: Coronal-temperature-diagnostic capability of the Hinode/X-ray telescope based on self-consistent calibration. II. Calibration with on-orbit data. Sol. Phys. 289, 1029–1042 (2014)Google Scholar
  23. Ramesh, R., et al.: Low-frequency radio observations of picoflare category energy releases in the solar atmosphere. Astrophys. J. 762, 89 (2013)ADSCrossRefGoogle Scholar
  24. Reale, F., et al.: Evidence of widespread hot plasma in a nonflaring coronal active region from Hinode/X-ray telescope. Astrophys. J. 698, 756–765 (2009)ADSCrossRefGoogle Scholar
  25. Sakao, T., et al.: The soft x-ray photon-counting telescope for solar observations. Proc. SPIE 9144, 91443D (2014)ADSGoogle Scholar
  26. Sako, N., et al.: A statistical study of coronal active events in the North polar region. Astrophys. J. 775, 22 (2013)ADSCrossRefGoogle Scholar
  27. Schmelz, J.T., et al.: Hinode X-ray telescope detection of hot emission from quiescent active regions: a nanoflare signature? Astrophys. J. 693, L131–L135 (2009a)ADSCrossRefGoogle Scholar
  28. Schmelz, J.T., et al.: Some like it hot: coronal heating observations from Hinode X-ray telescope and RHESSI. Astrophys. J. 704, 863–869 (2009b)ADSCrossRefGoogle Scholar
  29. Shimizu, T.: 3D magnetic field configuration of small-scale reconnection events in the solar plasma atmosphere. Phys. Plasmas. 22, 101207 (2005)ADSCrossRefGoogle Scholar
  30. Shimizu, T., et al.: Photospheric magnetic activities responsible for soft X-ray pointlike microflares. I. Identifications of associated photospheric/chromospheric activities. Astrophys. J. 574, 1074–1088 (2002)CrossRefGoogle Scholar
  31. Shimojo, M., et al.: Statistical study of solar X-ray jets observed with the YOHKOH soft X-ray telescope. Publ. Astron. Soc. Jpn. 48, 123–136 (1996)ADSCrossRefGoogle Scholar
  32. Teriaca, L., et al.: Spectroscopic observations of Fe XVIII in solar active regions. Astrophys. J. 754, L40 (2012)ADSCrossRefGoogle Scholar
  33. Terzo, S., et al.: Widespread nanoflare variability detected with Hinode/X-ray telescope in a solar active region. Astrophys. J. 736, 111 (2011)ADSCrossRefGoogle Scholar
  34. Testa, P., et al.: Observing coronal nanoflares in active region moss. Astrophys. J. 770, L1 (2013)ADSCrossRefGoogle Scholar
  35. Warren, H.P., et al.: A systematic survey of high-temperature emission in solar active regions. Astrophys. J. 759, 141 (2012)ADSCrossRefGoogle Scholar
  36. Winebarger, A., et al.: Using a differential emission measure and density measurements in an active region core to test a steady heating model. Astrophys. J. 740, 2 (2011)ADSCrossRefGoogle Scholar
  37. Winebarger, A., et al.: Defining the “Blind Spot” of Hinode EIS and XRT temperature measurements. Astrophys. J. 746, L17 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Space and Astronautical ScienceJapan Aerospace Exploration AgencySagamiharaJapan

Personalised recommendations