Advertisement

From Hinode to the Next-Generation Solar Observation Missions

  • Kiyoshi Ichimoto
  • Hirohisa Hara
  • Yukio Katsukawa
  • Ryoko Ishikawa
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 449)

Abstract

Ten years of Hinode operation have indicated the direction of the new challenges in solar physics. The task of the next solar observation missions is to determine the three-dimensional (3D) structure of magnetic fields that connect the photosphere and the corona by resolving the elementary magnetic structures in the solar atmosphere. SOLAR-C is the long-awaited next-generation international solar physics satellite that will observe the magnetic field of the chromosphere and the plasma dynamics from the photosphere to the corona with much higher spatial and temporal resolutions than Hinode. To this end, the Japanese solar physics community is promoting a sounding rocket experiment, the Chromospheric Lyman-Alpha SpectroPolarimeter, and a balloon experiment, SUNRISE-3, to pave the way for measuring the chromospheric magnetic fields with spectropolarimetry in the ultraviolet and infrared, respectively. Additionally the algorithm for determining the 3D magnetic field from spectropolarimetric data is investigated using a newly developed multi-wavelength spectropolarimeter at the Hida observatory. Solar telescopes with 4 m aperture are expected to begin operating in Hawaii and the Canary islands in the 2020s and introduce a new approach to uncovering fine-scale structures with the highest-ever spatial resolution. The continuous and high-precision observation by SOLAR-C, which has large spatial and temporal coverage, will contribute indispensable information for understanding the fundamental plasma process occurring in the Sun and in the Universe and for establishing the foundation for the next-generation space weather prediction.

Keywords

Solar observation Space mission Future plan 

References

  1. Alsina Ballester, E., Belluzzi, L., Trujillo Bueno, J.: The magnetic sensitivity of the Mg II k line to the joint action of Hanle, Zeeman, and magneto-optical effects. Astrophys. J. 831, L15 (2016). https://doi.org/10.3847/2041-8205/831/2/L15 ADSCrossRefGoogle Scholar
  2. Asensio Ramos, A., Trujillo Bueno, J., Landi Degl’Innocenti, E.: Advanced forward modeling and inversion of stokes profiles resulting from the joint action of the Hanle and Zeeman effects. Astrophys. J. 683, 542–565 (2008). https://doi.org/10.1086/589433 ADSCrossRefGoogle Scholar
  3. Barthol, P., et al.: The sunrise mission. Sol. Phys. 268, 1 (2011). https://doi.org/10.1007/s11207-010-9662-9 ADSCrossRefGoogle Scholar
  4. Belluzzi, L., Trujillo Bueno, J.: The polarization of the solar Mg II h and k lines. Astrophys. J. 750, L11 (2012). https://doi.org/10.1088/2041-8205/750/1/L11 ADSCrossRefGoogle Scholar
  5. Belluzzi, L., Trujillo Bueno, J., Štěpán, J.: The scattering polarization of the Lyα lines of H I and He II taking into account partial frequency redistribution and J-state interference effects. Astrophys. J. 755, L2 (2012). https://doi.org/10.1088/2041-8205/755/1/L2 ADSCrossRefGoogle Scholar
  6. del Pino Alemán, T., Casini, R., Manso Sainz, R.: Magnetic diagnostics of the solar chromosphere with the Mg II h-k lines. Astrophys. J. 830, L24 (2016). https://doi.org/10.3847/2041-8205/830/2/L24 ADSCrossRefGoogle Scholar
  7. Giono, G., Katsukawa, Y., Ishikawa, R., et al.: Optical alignment of the chromospheric Lyman-Alpha spectro-polarimeter using sophisticated methods to minimize activities under vacuum. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9905, 99053D (2016a). https://doi.org/10.1117/12.2232312 Google Scholar
  8. Giono, G., Ishikawa, R., Narukage, N., et al.: Polarization calibration of the chromospheric Lyman-Alpha spectroPolarimeter for a 0.1% polarization sensitivity in the VUV range. Part I: pre-flight calibration. Sol. Phys. 291, 3831–3867 (2016b). https://doi.org/10.1007/s11207-016-0950-x
  9. Giono, G., Ishikawa, R., Narukage, N., et al.: Polarization calibration of the chromospheric Lyman-Alpha spectroPolarimeter for a 0.1% polarization sensitivity in the VUV range. Part II: in flight calibration. Sol. Phys. 292, 57 (2017). https://doi.org/10.1007/s11207-017-1062-y
  10. Hara, H.: Coronal heating: issues revealed from Hinode observations. Astron. Her. 109, 533–539 (2016)ADSGoogle Scholar
  11. Henze, W., Stenflo, J.O.: Polarimetry in the MG II H and K lines. Sol. Phys. 111, 243–254 (1987). https://doi.org/10.1007/BF00148517 ADSCrossRefGoogle Scholar
  12. Ishikawa, S.: Hinode investigations of microflares and nanoflares. Astron. Her. 109, 544 (2016)ADSGoogle Scholar
  13. Ishikawa, R., Kano, R., Bando, T., et al.: Birefringence of magnesium fluoride in the vacuum ultraviolet and application to a half-waveplate. Appl. Opt. 52, 8205 (2013). https://doi.org/10.1364/AO.52.008205 ADSCrossRefGoogle Scholar
  14. Ishikawa, R., Narukage, N., Kubo, M., et al.: Strategy for realizing high-precision VUV spectro-polarimeter. Sol. Phys. 289, 4727–4747 (2014). https://doi.org/10.1007/s11207-014-0583-x ADSCrossRefGoogle Scholar
  15. Ishikawa, S., Shimizu, T., Kano, R., et al.: Development of a precise polarization modulator for UV spectropolarimetry. Sol. Phys. 290, 3081–3088 (2015). https://doi.org/10.1007/s11207-015-0774-0 ADSCrossRefGoogle Scholar
  16. Ishikawa, R., Trujillo Bueno, J., Uitenbroek, H., et al.: Indication of the Hanle effect by comparing the scattering polarization observed by CLASP in the Lyman-α and Si iii 120.65 nm lines. ApJ 841, 31I (2017). https://doi.org/10.3847/1538-4357/aa6ca9
  17. Kano, R., Trujillo Bueno, J., Winebarger, F., et al.: Discovery of scattering polarization in the hydrogen Lyman-α line of the solar disk radiation. ApJ 839, L10 (2017). https://doi.org/10.3847/2041-8213/aa697f ADSCrossRefGoogle Scholar
  18. Katsukawa, Y.: Penumbral microjets above a sunspot: evidence for magnetic reconnection in the solar chromosphere. Astron. Her. 109, 548–553 (2016)Google Scholar
  19. Katsukawa, Y., et al.: High resolution and high sensitivity spectropolarimetric observations of the solar chromosphere by the SUNRISE balloon-borne instrument. In: Balloon Symposium 2015, SA6000044039 (2015)Google Scholar
  20. Katsukawa, Y., et al.: SUNRISE-3 balloon experiment: near-infrared spectropolarimeter SCIP. In: Balloon Symposium 2016, SA6000057028 (2016)Google Scholar
  21. Kobayashi, K., et al.: The high-resolution coronal imager (Hi-C). Sol. Phys. 289, 4393 (2014). https://doi.org/10.1007/s11207-014-0544-4 ADSCrossRefGoogle Scholar
  22. Lagg, A., Solanki, S.K., Riethmuller, Y., et al.: Fully resolved quiet-sun magnetic flux tube observed with the SUNRISE/IMAX instrument. ApJL 723, L164 (2010). https://doi.org/10.1088/2041-8205/723/2/L164 ADSCrossRefGoogle Scholar
  23. Narukage, N., Auchère, F., Ishikawa, R., et al.: Vacuum ultraviolet spectropolarimeter design for precise polarization measurements. Appl. Opt. 54, 2080 (2015). https://doi.org/10.1364/AO.54.002080 ADSCrossRefGoogle Scholar
  24. Narukage, N., Kubo, M., Ishikawa, R., et al.: High-reflectivity coatings for vacuum ultraviolet spectropolerimeter. Sol. Phys. 292, 40 (2017). https://doi.org/10.1007/s11207-017-1061-z ADSCrossRefGoogle Scholar
  25. Okamoto, J.: Waves in the solar corona. Astron. Her. 109, 540–543 (2016)ADSGoogle Scholar
  26. Solanki, S., et al.: Sunrise: instrument, mission, data, and first results. Astrophys. J. 723, L127 (2010). https://doi.org/10.1088/2041-8205/723/2/L127 ADSCrossRefGoogle Scholar
  27. Steiner, O., Franz, M., Bello Gonzalez, N., et al.: Detection of vortex tubes in solar granulation from observations with SUNRISE. ApJL 723, L180 (2010). https://doi.org/10.1088/2041-8205/723/2/L180 ADSCrossRefGoogle Scholar
  28. Stenflo, J.O., Dravins, D., Wihlborg, N., et al.: Search for spectral line polarization in the solar vacuum ultraviolet. Sol. Phys. 66, 13–19 (1980). https://doi.org/10.1007/BF00150514 ADSCrossRefGoogle Scholar
  29. Štěpán, J., Trujillo Bueno, J., Leenaarts, J., Carlsson, M.: Three-dimensional radiative transfer simulations of the scattering polarization of the hydrogen Lyα line in a magnetohydrodynamic model of the chromosphere-corona transition region. Astrophys. J. 803, 65 (2015). https://doi.org/10.1088/0004-637X/803/2/65 ADSCrossRefGoogle Scholar
  30. Trujillo Bueno, J., Štěpán, J., Casini, R.: The Hanle effect of the hydrogen Lyα line for probing the magnetism of the solar transition region. Astrophys. J. 738, L11 (2011). https://doi.org/10.1088/2041-8205/738/1/L11 ADSCrossRefGoogle Scholar
  31. Watanabe, H., Narukage, N., Kubo, M., et al.: Ly-alpha polarimeter design for CLASP rocket experiment. In: Solar Physics and Space Weather Instrumentation IV, 8148, 81480T (2011). https://doi.org/10.1088/0004-637X/736/1/71 Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Kiyoshi Ichimoto
    • 1
  • Hirohisa Hara
    • 1
  • Yukio Katsukawa
    • 2
  • Ryoko Ishikawa
    • 1
  1. 1.SOLAR-C Project OfficeNational Astronomical Observatory of JapanMitaka, TokyoJapan
  2. 2.Solar Science ObservatoryNational Astronomical Observatory of JapanMitaka, TokyoJapan

Personalised recommendations