Physics of Partial Ionization in the Solar Chromosphere Revealed by the Solar Optical Telescope Onboard Hinode

  • Hiroaki Isobe
Part of the Astrophysics and Space Science Library book series (ASSL, volume 449)


The Solar Optical Telescope (SOT) onboard Hinode revealed that small-scale explosions and jet phenomena are common occurrences in the chromosphere and the photosphere of the Sun. Their morphology, dynamics, and associated time scales normalized by the local Alfvén speed are similar to those in the coronal microflares and jets driven by magnetic reconnection. However, the lower atmosphere has very different plasma parameters from the corona: the former is partially ionized and fully collisional, while the latter is fully ionized and almost collisionless. Thus the findings of the SOT pose an important question in plasma physics about how such fast magnetic reconnection similar to that in the corona is accommodated in the photosphere and the chromosphere? In this paper we will review the chromospheric observations by the SOT and their implications for the physics of partially ionized plasmas.


Sun: photosphere Sun: chromosphere Partial ionization 



This work was partially supported by JSPS KAKENHI Grant Number 16H03955.


  1. Arber, T.D., Haynes, M., Leake, J.E.: Emergence of a flux tube through a partially ionized solar atmosphere. Astrophys. J. 666, 541–546 (2007)ADSCrossRefGoogle Scholar
  2. Berger, T., Shine, R.A., Slater, G.L., Tarbell, T.D., Title, A.M., Okamoto, T.J., Ichimoto, K., Katsukawa, Y., Suematsu, Y., Tsuneta, S., Lites, B.W., Shimizu, T.: Hinode SOT observations of solar quiescent prominence dynamics. Astrophys. J. 676, L89 (2008)ADSCrossRefGoogle Scholar
  3. Berger, T., Testa, P., Hillier, A., Boerner, P., Low, B.C., Shibata, K., Schrijver, C., Tarbell, T., Title, A.: Magneto-thermal convection in solar prominences. Nature 472, 197–200 (2011)ADSCrossRefGoogle Scholar
  4. Brandenburg, A., Zweibel, E.G.: The formation of sharp structures by ambipolar diffusion. Astrophys. J. Lett. 427, L91–L94 (1994)ADSCrossRefGoogle Scholar
  5. Cheung, C.M.C., Cameron, R.H.: Magnetohydrodynamics of the weakly ionized solar photosphere. Astrophys. J. 750, 6(9pp) (2012)Google Scholar
  6. Cirtain, J.W., Golub, L., Lundquist, L., Van Ballegooijen, A., Savcheva, A., Shimojo, M., DeLuca, E., Tsuneta, S., Sakao, T., Reeves, K., Weber, M., Kano, R., Narukage, N., Shibasaki, K.: Evidence for Alfén waves in solar X-ray jets. Science 318, 1580–1582 (2007)ADSCrossRefGoogle Scholar
  7. De Pontieu, B., Haerendel, G.: Weakly damped Alfven waves as drivers for spicules. Astron. Astrophys. 338, 729–736 (2000)Google Scholar
  8. Ellerman, F.: Solar hydrogen “Bombs”. Astrophys. J. 46, 298–300 (1917)ADSCrossRefGoogle Scholar
  9. Goodman, M.L.: On the efficiency of plasma heating by Pedersen current dissipation from the photosphere to the lower corona. Astron. Astrophys. 416, 1159–1178 (2004)ADSCrossRefGoogle Scholar
  10. Hillier, A., Isobe, H., Shibata, K., Berger, T.: Numerical simulations of the magnetic Rayleigh-Taylor instability in the Kippenhahn-Schlüter prominence model. Astrophys. J. 736(L1), 1–6 (2011)ADSCrossRefGoogle Scholar
  11. Hillier, A., Takasao, T., Nakamura, N.: The formation and evolution of reconnection-driven, slow-mode shocks in a partially ionized plasma. Astron. Astrophys. 591, A112(16pp) (2016)Google Scholar
  12. Isobe, H., Miyagoshi, T., Shibata, K., Yokoyama, T.: Filamentary structure on the Sun from the magnetic Rayleigh-Taylor instability. Nature 434, 478–481 (2005)ADSCrossRefGoogle Scholar
  13. Isobe, H., Miyagoshi, T., Shibata, K., Yokoyama, T.: Three-dimensional simulation of solar emerging flux using the Earth simulator I. Magnetic Rayleigh-Taylor instability at the top of the emerging flux as the origin of filamentary structure. Publ. Astron. Soc. Jpn. 58, 423–438 (2006)Google Scholar
  14. Isobe, H., Tripathi, D., Archontis, V.: Ellerman bombs and jets associated with resistive flux emergence. Astrophys. J. 657, L53–L56 (2007)ADSCrossRefGoogle Scholar
  15. Isobe, H., Proctor, M.R.E., Weiss, N.O.: Convection-driven emergence of small-scale magnetic fields and their role in coronal heating and solar wind acceleration. Astrophys. J. 679, L57–L60 (2008)ADSCrossRefGoogle Scholar
  16. Katsukawa, Y., Berger, T.E., Ichimoto, K., Lites, B.W., Nagata, S., Shimizu, T., Shine, R.A., Suematsu, Y., Tarbell, T.D., Title, A.M., Tsuneta, S.: Small-scale jetlike features in penumbral chromospheres. Science 318, 1594–1597 (2007)ADSCrossRefGoogle Scholar
  17. Khomenko, E., Collados, M.: Heating of the magnetized solar chromosphere by partial ionization effects. Astrophys. J. 747, 87–97 (2012)ADSCrossRefGoogle Scholar
  18. Khomenko, E., Collados, M., Díaz, A., VItas, N.: Fluid description of multi-component solar partially ionized plasma. Phys. Plasmas. 21, 092901 (2014a)ADSCrossRefGoogle Scholar
  19. Khomenko, E., Díaz, A., De Vidente, A., Collados, M., Luna, M.: Rayleigh-Taylor instability in prominences from numerical simulations including partial ionization effects. Astron. Astrophys. 565, A45-1–A45-15 (2014b)Google Scholar
  20. Leake, J.E., Arber, T.D.: The emergence of magnetic flux through a partially ionised solar atmosphere. Astron. Astrophys. 450, 805–818 (2006)ADSCrossRefGoogle Scholar
  21. Leake, J.E., Lukin, V.S., Linton, M.G., Meier, E.T., Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma. Astrophys. J. 760, 109(12pp) (2012)Google Scholar
  22. Leake, J., DeVore, C.R., Thayer, J.P., Burns, A.G., Crowley, G., Gilbert, H.R., Huba, J.D., Krall, J., Linton, M.G., Lukin, V.S., Wang, W.: Ionized plasma and neutral gas coupling in the Sun’s chromosphere and Earth’s ionosphere/thermosphere. Space Sci. Rev. 184, 107–172 (2014)ADSCrossRefGoogle Scholar
  23. Leenaarts, J., Carlsson, M., Hansteen, V., Rutten, R.J.: Non-equilibrium hydrogen ionization in 2D simulations of the solar atmosphere. Astron. Astrophys. 473, 625–632 (2007)ADSCrossRefGoogle Scholar
  24. Loureiro, N.F., Schekochihin, A.A., Cowley, S.C.: Instability of current sheets and formation of plasmoid chains. Phys. Plasmas. 14, 100703–100703-4 (2007)Google Scholar
  25. Martinez-Sykora, J., De Pontieu, B., Hansteen, V., Carlsson, M.: The role of partial ionization effects in the chromosphere. Phys. Trans. R. Soc. A.
  26. Matsumoto, T., Kitai, R., Shibata, K., Nagata, S., Otsuji, K., Nakamura, T., Watanabe, H., Tsuneta, S., Suematsu, Y., Ichimoto, K., Shimizu, T., Katsukawa, Y., Tarbell, T.D., Lites, B.W., Shine, R.A., Title, A.M.: Cooperative observation of Ellerman bombs between the solar optical telescope aboard Hinode and Hida/Domeless solar telescope. Publ. Astron. Soc. Jpn. 60, 577–584 (2008)ADSCrossRefGoogle Scholar
  27. Morita, S., Shibata, K., Ueno, S., Ichimoto, K., Kitai, R., Otsuji, K.: Observations of chromospheric anemone jets with CaII broadband filtergraph and Hida CaII spectroheliograph. Publ. Astron. Soc. Jpn. 62, 901–920 (2010)ADSCrossRefGoogle Scholar
  28. Nelson, C.J., Shelyag, S., Mathioudakis, M., Doyle, J.G., Madjarska, M.S., Uitenbroek, H., Erdélyi, R.: Ellerman bombs – evidence for magnetic reconnection in the lower solar atmosphere. Astrophys. J. 779, 125–134 (2013)ADSCrossRefGoogle Scholar
  29. Nishizuka, N., Shimizu, M., Nakamura, T., Otsuji, K., Okamoto, J., Katsukawa, Y., Shibata, K.: Giant chromospheric anemone jet observed with Hinode and comparison with magnetohydrodynamic simulations: evidence of propagating Alfvén waves and magnetic reconnection. Astrophys. J. Lett. 683, L83–L86 (2008)ADSCrossRefGoogle Scholar
  30. Okamoto, T.J., De Pontieu, B.: Propagating waves along spicules. Astrophys. J. 736, L24(6pp) (2011)Google Scholar
  31. Okamoto, T.J., Tsuneta, S., Berger, T.E., Ichimoto, K., Katsukawa, Y., Lites, B.W., Nagata, S., Shibata, K., Shimizu, T., Shine, R.A., Suematsu, Y., Tarbell, T.D., Title, A.M.: Coronal transverse magnetohydrodynamic waves in a solar prominence. Science 318, 1577–1580 (2007)ADSCrossRefGoogle Scholar
  32. Pariat, E., Aulanier, G., Schmieder, B., Geogoulis, M.K., Rust, D.M., Bernasconi, P.N.: Resistive emergence of undulatory flux tubes. Astrophys. J. 614, 1099–1112 (2004)ADSCrossRefGoogle Scholar
  33. Sano, T., Stone, J.M.: The effect of the hall term on the nonlinear evolution of the magnetorotational instability. I. Local axisymmetric simulations. Astrophys. J. 570, 314–328 (2002)CrossRefGoogle Scholar
  34. Shibata, K.: New observational facts about solar flares from YOHKOH studies – evidence of magnetic reconnection and a unified model of flares. Adv. Space Res. 17, (4/5)9–(4/5)18 (1996)Google Scholar
  35. Shibata, K., Ishido, Y., Acton, L.W., Strong, K.T., Hirayama, T., Uchida, Y., McAllister, A.H., Matsumoto, R., Tsuneta, S., Shimizu, T., Hara, H., Sakurai, T., Ichimoto, K., Nishio, Y., Ogawara, Y.: Observations of X-ray jets with the YOHKOH soft X-ray telescope. Publ. Astron. Soc. Jpn. 44, L173–L179 (1992)ADSGoogle Scholar
  36. Shibata, K., Nakamra, T., Matsumoto, T., Otsuji, K., Okamoto, T.J., Nishizuka, N., Kawate, T., Watanabe, H., Nagata, S., UeNo, S., Kitai, R., Nozawa, S., Tsuneta, S., Suematsu, Y., Ichimoto, K., Shimizu, T., Katsukawa, Y., Tarbell, T.D., Berger, T.E., Lites, B.W., Shine, R.A., Title, A.M.: Chromospheric anemone jets as evidence of ubiquitous reconnection. Science 318, 1591–1594 (2007)ADSCrossRefGoogle Scholar
  37. Shimizu, T.: 3D magnetic field configuration of small-scale reconnection events in the solar plasma atmosphere. Phys. Plasmas. 22, 101207 (2015)ADSCrossRefGoogle Scholar
  38. Singh, K.A.P., Krishan, V.: Alfvén-like mode in partially ionized solar atmosphere. New Astron. 15, 119–125 (2010)ADSCrossRefGoogle Scholar
  39. Singh, K.A.P., Isobe, H., Nishizuka, N., Nishida, K., Shibata, K.: Multiple plasma ejections and intermittent nature of magnetic reconnection in solar chromospheric anemone jets. Astrophys. J. 759, 33–42 (2012)ADSCrossRefGoogle Scholar
  40. Soler, R., Oliver, R., Ballester, J.L.: Magnetohydrodynamic waves in a partially ionized filament thread. Astrophys. J. 699, 1553–1562 (2009)ADSCrossRefGoogle Scholar
  41. Takasao, S., Asai, A., Isobe, H., Shibata, K.: Simultaneous observation of reconnection inflow and outflow associated with the 2010 August 18 solar flare. Astrophys. J. Lett. 745, L6–L12 (2012)ADSCrossRefGoogle Scholar
  42. Takasao, S., Isobe, H., Shibata, K.: Numerical simulations of solar chromospheric jets associated with emerging flux. Publ. Astron. Soc. Jpn. 65, 62 (2013)ADSCrossRefGoogle Scholar
  43. Vernazza, J.E., Avrett, E.H., Loeser, R.: Structure of the solar chromosphere. III – models of the EUV brightness components of the quiet-sun. Astrophys. J. Supp. 45, 635–725 (1981)Google Scholar
  44. Zaqarashvili, T.V., Khodachenko, M.L., Rucker, H.O.: Magnetohydrodynamic waves in solar partially ionized plasmas: two-fluid approach. Astron. Astrophys. 529, A82(9pp) (2011)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Graduate School of Advanced Integrated Studies in Human SurvivabilityKyoto UniversitySakyo-kuJapan

Personalised recommendations