Understanding Magneto-convection on Solar Surface with Hinode Satellite Observation

  • Yusuke Iida
Part of the Astrophysics and Space Science Library book series (ASSL, volume 449)


The Hinode satellite observations revealed that solar surface magneto-convection is more active than previously expected. Hinode helped enhance our knowledge of small-scale structures with its high temporal and spatial resolution data. In particular, the granular element structure of the magnetic field was observed, and the related phenomena have been widely investigated in the past decade since its launch. In this paper, we examine the observational results of such small-scale magneto-convection fields using the Hinode satellite data and propose future tasks in the following 10 years.


Sun: photosphere Sun: surface magnetism Sun: convection 



I am grateful to all the editors who helped write this article. Moreover, I appropriate everyone involved in the development and operation of the Hinode satellite for providing the best analytical data so far and for the future.


  1. Abramenko, V.I., Carbone, V., Yurchyshyn, V., Goode, P.R., Stein, R.F., Lepreti, F., Capparelli, V., Vecchio, A.: Turbulent diffusion in the photosphere as derived from photospheric bright point motion. Astrophys. J. 743, 133–142 (2011)ADSCrossRefGoogle Scholar
  2. Chae, J., Moon, Y.-J., Pevtsov, A.A.: Observational evidence of magnetic flux submergence in flux cancellation sites. Astrophys. J. 602, L65–L68 (2004)ADSCrossRefGoogle Scholar
  3. Danilovic, S., Beeck, B., Pietarila, A., Schussler, M., Solanki, S.K., Martinez Pillet, M., Bonet, J.A., del Toro Iniesta, J.A., Domingo, V., Barthol, P., Berkefeld, T., Gandorfer, A., Knolker, M., Schmidt, W., Title, A.M.: Transverse component of the magnetic field in the solar photosphere observed by Sunrise. Astrophys. J. 723, L149–L153 (2010)ADSCrossRefGoogle Scholar
  4. DeForest, C.E., Hagenaar, H.J., Lamb, D.A., Parnell, C.E., Welsch, B.T.: Solar magnetic tracking. I. Software comparison and recommended practices. Astrophys. J. 666, 576–587 (2007)CrossRefGoogle Scholar
  5. Fischer, C.E., de Wijn, A.G., Centeno, R., Lites, B.W., Keller, C.U.: Statistics of convective collapse events in the photosphere and chromosphere observed with the Hinode SOT. Astron. Astrophys. 504, 583–588 (2009)ADSCrossRefGoogle Scholar
  6. Giannattasio, F., Stangalini, M., Berrilli, F., Del Moro, D., Bellot Rubio. L.: Diffusion of magnetic elements in a supergranular cell. Astrophys. J. 788, 137–141 (2014)Google Scholar
  7. Gosic, M., Bellot Rubio, L.R., Orozco Suarez, D., Katsukawa, Y., del Toro Iniesta, J.C.: The solar internetwork. I. Contribution to the network magnetic flux. Astrophys. J. 797, 49–59 (2014)Google Scholar
  8. Hagenaar, H.J., Schrijver, C.J., Title, A.M., Shine, R.A.: Dispersal of magnetic flux in the quiet solar photosphere. Astrophys. J. 511, 923–944 (1999)ADSCrossRefGoogle Scholar
  9. Harvey, J.W., Branston, D., Henney, C.J., Keller, C.U.: Seething horizontal magnetic fields in the quiet solar photosphere. Astrophys. J. 659, L177–L180 (2007)ADSCrossRefGoogle Scholar
  10. Iida, Y.: Tracking of magnetic flux concentrations over a five-day observation, and an insight into surface magnetic flux transport. J. Space Weather Space Clim. 6, A27 (2016)ADSCrossRefGoogle Scholar
  11. Iida, Y., Yokoyama, T., Ichimoto, K.: Vector magnetic fields and Doppler velocity structures around a cancellation site in the quiet Sun. Astrophys. J. 713, 325–329 (2010)ADSCrossRefGoogle Scholar
  12. Iida, Y., Hagenaar, H.J., Yokomaya, T.: Detection of flux emergence, splitting, merging, and cancellation of network fields. I. Splitting and merging. Astrophys. J. 752, 149–157 (2012)ADSCrossRefGoogle Scholar
  13. Iida, Y., Hagenaar, H.J., Yokoyama, T.: Detection of flux emergence, splitting, merging, and cancellation of network fields. II. Apparent unipolar flux change and cancellation. Astrophys. J. 814, 134–142 (2015)CrossRefGoogle Scholar
  14. Ishikawa, R., Tsuneta, S., Ichimoto, K., Isobe, H., Katsukawa, Y., Lites, B.W., Nagata, S., Shimizu, T., Shine, R.A., Suematsu, Y., Tarbell, T.D., Title, A.M.: Transient horizontal magnetic fields in solar plage regions. Astron. Astrophys. 481, L25–L28 (2008)ADSCrossRefGoogle Scholar
  15. Kubo, M., Low, B.C., Lites, B.W.: Unresolved polarity magnetic fields at flux cancellation site in solar photosphere at 0″.3 spatial resolution. Astrophys. J. 793, L9 (2014)Google Scholar
  16. Lamb, D.A., DeForest, C.E., Hagenaar, H.J., Parnell, C.E., Welsch, B.T.: Solar magnetic tracking. III. Apparent unipolar flux emergence in high-resolution observations. Astrophys. J. 720, 1405–1416 (2010)Google Scholar
  17. Lites, B.W., Leka, K.D., Skumanich, A., Pillet, V.M., Shimizu, T.: Small-scale horizontal magnetic fields in the solar photosphere. Astrophys. J. 460, 1019–1026 (1996)ADSCrossRefGoogle Scholar
  18. Lites, B.W., Kubo, M., Socas-Navaro, H., Berger, T., Frank, Z., Shine, R., Tarbell, T., Title, A., Shimizu, T., Nagata, S.: The horizontal magnetic flux of the quiet-Sun internetwork as observed with the Hinode spectro-polarimeter. Astrophys. J. 672, 1237–1253 (2008)ADSCrossRefGoogle Scholar
  19. Nagata, S., Tsuneta, S., Suematsu, Y., Ichimoto, K., Katsukawa, Y., Shimizu, T., Yokoyama, T., Tarbell, T.D., Shine, R.A., Berger, T.E., Title, A.M., Bellot Rubio, L.R., Orozco Suarez, D.: Formation of solar magnetic flux tubes with kilogauss field strength induced by convective instability. Astrophys. J. 677, L145–L147 (2008)ADSCrossRefGoogle Scholar
  20. Otsuji, K., Kitai, R., Ichimoto, K., Shibata, K.: Statistical study on the nature of solar-flux emergence. Publ. Astron. Soc. Jpn. 63, 1047–105 (2011)ADSCrossRefGoogle Scholar
  21. Parker, E.N.: Hydraulic concentration of magnetic fields in the solar photosphere. IV. Adiabatic cooling and concentration in downdrafts. Astrophys. J. 211, 368–377 (1978)Google Scholar
  22. Parnell, C.E., DeForest, C.E., Hagenaar, H.J., Johnston, B.A., Lamb, D.A., Welsch, B.T.: A power-law distribution of solar magnetic fields over more than five decades in flux. Astrophys. J. 698, 75–82 (2009)ADSCrossRefGoogle Scholar
  23. Schrijver, C.J., Title, A.M., van Ballegooijen, A.A., Hagenaar, H.J., Shine, R.A.: Sustaining the quiet photospheric network: the balance of flux emergence, fragmentation, merging, and cancellation. Astrophys. J. 487, 424–436 (1997)ADSCrossRefGoogle Scholar
  24. Spruit, H.C.: Convective collapse of flux tubes. Sol. Phys. 61, 363–378 (1979)ADSCrossRefGoogle Scholar
  25. Stenflo, J.O.: Collapsed, uncollapsed, and hidden magnetic flux on the quiet Sun. Astron. Astrophys. 529, A42 (2011)ADSCrossRefGoogle Scholar
  26. Thornton, L.M., Parnell, C.E.: Small-scale flux emergence observed using Hinode/SOT. Sol. Phys. 269, 13–40 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Kwansei Gakuin UniversityHyogoJapan

Personalised recommendations