Advertisement

New Approach to Solar Flare Trigger Process with Hinode/Solar Optical Telescope

  • Yumi Bamba
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 449)

Abstract

Solar flares are explosive phenomena that release magnetic energy stored in the solar corona and affect our terrestrial environment at times. However, the triggering process of flares is still not completely understood. Here, I review the status of our theoretical understanding and observational examination of this process. In particular, I introduce the outcomes and new physical mechanisms emerging from our flare trigger study using the Hinode/Solar Optical Telescope.

Keywords

Sun: flares Flare-trigger process Hinode/Solar optical telescope 

Notes

Acknowledgements

This manuscript is based on my PhD thesis (Bamba 2016) and published papers (Bamba et al. 2013, 2014). I am deeply grateful to my PhD advisor Prof. Kanya Kusano at Nagoya University. I also appreciate my collaborators in Nagoya University, ISAS/JAXA, NAOJ, LMSAL, and NWRA. Ten years ago, when Hinode was launched, I was a high school student, and, at that time, I did not have a great interest in solar physics. However, I developed an interest after watching the fascinating Hinode videos. I would like to express my sincere gratitude to those who have made efforts to develop Hinode and those who perform the meaningful scientific operations.

References

  1. Amari, T., et al.: Characterizing and predicting the magnetic environment leading to solar eruptions. Nature 514(7523), 465–469 (2014). https://doi.org/https://doi.org/10.1038/nature13815Google Scholar
  2. Aulanier, G., et al.: The standard flare model in three dimensions. I. Strong-to-weak shear transition in post-flare loops. Astron. Astrophys. 543, id.A110, 14 pp (2012). https://doi.org/10.1051/0004-6361/201219311
  3. Bamba, Y.: Ph.D. thesis, Nagoya University (2016)Google Scholar
  4. Bamba, Y., et al.: Study on the triggering process of solar flares based on Hinode/SOT observations. Astrophys. J. 778(1), article id. 48, 13 pp (2013). https://doi.org/10.1088/0004-637X/778/1/48
  5. Bamba, Y., et al.: Comparison between Hinode/SOT and SDO/HMI, AIA data for the study of the solar flare trigger process. Publ. Astron. Soc. Jpn. 66(SP1), id.S169 pp (2014). https://doi.org/https://doi.org/10.1093/pasj/psu091Google Scholar
  6. Bobra, M.G., Couvidat, S.: Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm. Astrophys. J. 798(2), article id. 135, 11 pp (2015). https://doi.org/10.1088/0004-637X/798/2/135
  7. Bobra, M.G., Ilonidis, S.: Predicting coronal Mass ejections using machine learning methods. Astrophys. J. 821(2), article id. 127, 7 pp (2016). https://doi.org/10.3847/0004-637X/821/2/127
  8. Carmichael, H.: A process for flares. The physics of solar flares. In: Greenbelt, M.D., Hess, W.N. (eds.) Proceedings of the AAS-NASA Symposium held 28–30 October, 1963 at the Goddard Space Flight Center. Washington, DC: National Aeronautics and Space Administration, Science and Technical Information Division, p. 451 (1964)Google Scholar
  9. Carrington, R.C.: Description of a singular appearance seen in the Sun on September 1, 1859. Mon. Not. R. Astron. Soc. 20, 13–15 (1859). https://doi.org/https://doi.org/10.1093/mnras/20.1.13Google Scholar
  10. Chen, P.F., Shibata, K.: An emerging flux trigger mechanism for coronal Mass ejections. Astrophys. J. 545(1), 524–531 (2000). https://doi.org/10.1086/317803
  11. Fan, Y., Gibson, S.E.: The emergence of a twisted magnetic flux tube into a preexisting coronal arcade. Astrophys. J. 589(2), L105–L108 (2003). https://doi.org/10.1086/375834
  12. Hirayama, T.: Theoretical model of flares and prominences. I: evaporating flare model. Sol. Phys. 34(2), 323–338 (1974). https://doi.org/10.1007/BF00153671
  13. Hodgson, R.: On a curious appearance seen in the Sun. Mon. Not. R. Astron. Soc. 20, 15–16 (1859). https://doi.org/https://doi.org/10.1093/mnras/20.1.15Google Scholar
  14. Ichimoto, K., et al.: Polarization calibration of the solar optical telescope onboard Hinode. Sol. Phys. 249(2), 233–261 (2008). https://doi.org/10.1007/s11207-008-9169-9
  15. Kopp, R.A., Pneuman, G.W.: Magnetic reconnection in the corona and the loop prominence phenomenon. Sol. Phys. 50, 85–98 (1976). https://doi.org/10.1007/BF00206193
  16. Kubo, Y., et al.: Hinode observations of a vector magnetic field change associated with a flare on 2006 December 13. Publ. Astron. Soc. Jpn. 59(SP3), S779–S784 (2007). https://doi.org/https://doi.org/10.1093/pasj/59.sp3.S779Google Scholar
  17. Kusano, K., et al.: Magnetic field structures triggering solar flares and coronal Mass ejections. Astrophys. J. 760(1), article id. 31, 9 pp. (2012). https://doi.org/10.1088/0004-637X/760/1/31
  18. Leka, K.D., Barnes, G.: Photospheric magnetic field properties of flaring versus flare-quiet active regions. I. Data, general approach, and sample results. Astrophys. J. 595(2), 1277–1295 (2003). https://doi.org/10.1086/377511
  19. Magara, T., Tsuneta, S.: Hinode’s observational result on the saturation of magnetic helicity injected into the solar atmosphere and its relation to the occurrence of a solar flare. Publ. Astron. Soc. Jpn. 60(5), 1181–1189 (2008). https://doi.org/https://doi.org/10.1093/pasj/60.5.1181ADSCrossRefGoogle Scholar
  20. Masuda, S., et al.: A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection. Nature 371(6497), 495–497 (1994). https://doi.org/10.1038/371495a0 ADSCrossRefGoogle Scholar
  21. Ogawara, Y., et al.: The status of YOHKOH in orbit – an introduction to the initial scientific results. Pub. Astron. Soc. Jpn. 44(5), L41–L44 (1992). ISSN:0004-6264Google Scholar
  22. Pesnell, W.D., et al.: The solar dynamics observatory (SDO). Sol. Phys. 275(1-2), 3–15 (2012). https://doi.org/10.1007/s11207-011-9841-3 ADSCrossRefGoogle Scholar
  23. Sturrock, P.A.: Model of the high-energy phase of solar flares. Nature 211(5050), 695–697 (1966). https://doi.org/10.1038/211695a0 ADSCrossRefGoogle Scholar
  24. Toriumi, S., et al.: The magnetic systems triggering the M6.6 class solar flare in NOAA active region 11158. Astrophys. J. 773(2), article id. 128, 10 pp (2013). https://doi.org/10.1088/0004-637X/773/2/128
  25. Török, T., Kliem, B.: Confined and ejective eruptions of kink-unstable flux ropes. Astrophys. J. 630(1), L97–L100 (2005). https://doi.org/10.1086/462412 ADSCrossRefGoogle Scholar
  26. Tsuneta, S., et al.: Observation of a solar flare at the limb with the YOHKOH soft X-ray telescope. Pub. Astron. Soc. Jpn. 44(5), L63–L69 (1992). ISSN:0004-6264Google Scholar
  27. Tsuneta, S., et al.: The solar optical telescope for the Hinode mission: an overview. Sol. Phys. 249(2), 167–196 (2008). https://doi.org/10.1007/s11207-008-9174-z ADSCrossRefGoogle Scholar
  28. Watanabe, K., et al.: Hinode flare catalogue. Sol. Phys. 279(1), 317–322 (2012). https://doi.org/10.1007/s11207-012-9983-y ADSCrossRefGoogle Scholar
  29. Yashiro, S., et al.: Different power-law indices in the frequency distributions of flares with and without coronal Mass ejections. Astrophys. J. 650(2), L143–L146 (2006). https://doi.org/10.1086/508876 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.SOLAR-B Project, Institute of Space and Astronautical Science (ISAS)Japan Aerospace Exploration Agency (JAXA)SagamiharaJapan

Personalised recommendations