Advertisement

New Insights into Sunspots Through Hinode Observations

  • Masahito Kubo
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 449)

Abstract

Studies on sunspots have a very long history mostly supported by ground-based observations. However, the detailed evolution of sunspot magnetic field structures are revealed by Hinode observations of accurate photospheric magnetic fields at high spatial resolution under the seeing-free conditions. After the launch of Hinode, the radiative three-dimensional magnetohydrodynamic simulations successfully demonstrated sunspots. The combination of good observations and simulations results in rapid advancement in our knowledge about sunspots. Especially, fine-scale structures in sunspots are commonly understood as a manifestation of the magneto-convection .

Keywords

Sunspots 

Notes

Acknowledgements

The rapid progress in our understanding of sunspots after the launch of Hinode proves that SOT provides us excellent data. We really appreciate all people who are involved in the development and operation of SOT.

References

  1. Borrero, J.M., Ichimoto, K.: Magnetic structure of sunspots. Living Rev. Sol. Phys. 8, 4 (2011). https://doi.org/10.12942/lrsp-2011-4
  2. Borrero, J.M., Solanki, S.K.: Are there field-free gaps near τ = 1 in Sunspot penumbrae? Astrophys. J. 687, 668–677 (2008). https://doi.org/10.1086/591220
  3. Borrero, J.M., Asensio Ramos, A., Collados, M., et al.: Deep probing of the photospheric Sunspot penumbra: no evidence of field-free gaps. A&A 596, A2 (2016). https://doi.org/10.1051/0004-6361/201628313
  4. Ichimoto, K., Suematsu, Y., Tsuneta, S., et al.: Twisting motions of Sunspot penumbral filaments. Science 318, 1597 (2007a). https://doi.org/10.1126/science.1146337
  5. Ichimoto, K., Shine, R.A., Lites, B., et al.: Fine-scale structures of the evershed effect observed by the solar optical telescope aboard Hinode. PASJ 59, S593 (2007b). https://doi.org/10.1093/pasj/59.sp3.S593
  6. Ilonidis, S., Zhao, J., Kosovichev, A.: Detection of emerging Sunspot regions in the solar interior. Science 333, 993 (2011). https://doi.org/10.1126/science.1206253
  7. Jurcák, J., Bellot Rubio, L., Ichimoto, K., et al.: The analysis of penumbral fine structure using an advanced inversion technique. PASJ 59, S601 (2007). https://doi.org/10.1093/pasj/59.sp3.S601
  8. Katsukawa, Y., Yokoyama, T., Berger, T.E., et al.: Formation process of a light bridge revealed with the Hinode solar optical telescope. PASJ 59, S577 (2007). https://doi.org/10.1093/pasj/59.sp3.S577
  9. Kubo, M., Lites, B.W., Ichimoto, K., et al.: Disintegration of magnetic flux in decaying sunspots as observed with the Hinode SOT. Astrophys. J. 681, 1677–1687 (2008a). https://doi.org/10.1086/588040
  10. Kubo, M., Lites, B.W., Shimizu, T., Ichimoto, K.: Magnetic flux loss and flux transport in a decaying active region. Astrophys. J. 686, 1447–1453 (2008b). https://doi.org/10.1086/592064
  11. Lagg, A., Solanki, S.K., van Noort, M., Danilovic, S.: Vigorous convection in a Sunspot granular light bridge. A&A 568, A60 (2014). https://doi.org/10.1051/0004-6361/201424071
  12. Lites, B.W., Centeno, R., McIntosh, S.W.: The solar cycle dependence of the weak internetwork flux. PASJ 66, S4 (2014). https://doi.org/10.1093/pasj/psu082
  13. Ortiz, A., Bellot Rubio, L.R., Rouppe van der Voort, L.: Downflows in Sunspot umbral dots. Astrophys. J. 713, 1282 (2010). https://doi.org/10.1088/0004-637X/713/2/1282
  14. Rempel, M.: Penumbral fine structure and driving mechanisms of large-scale flows in simulated sunspots. Astrophys. J. 729, 5 (2011). https://doi.org/10.1088/0004-637X/729/1/5
  15. Rempel, M., Cheung, M.C.M.: Numerical simulations of active region scale flux emergence: from spot formation to decay. Astrophys. J. 785, 90 (2014). https://doi.org/10.1088/0004-637X/785/2/90
  16. Rempel, M., Schlichenmaier, R.: Sunspot modeling: from simplified models to radiative MHD simulations. Living Rev. Sol. Phys. 8, 3 (2011). https://doi.org/10.12942/lrsp-2011-3
  17. Rempel, M., Schüssler, M., Cameron, R.H., Knölker, M.: Penumbral structure and outflows in simulated sunspots. Science 325, 171 (2009). https://doi.org/10.1126/science.1173798
  18. Romano, P., Frasca, D., Guglielmino, S.L., et al.: Velocity and magnetic field distribution in a forming penumbra. Astrophys. J. 771, L3 (2013). https://doi.org/10.1088/2041-8205/771/1/L3
  19. Sakurai, T., et al.: PASJ (Submitted) (2018)Google Scholar
  20. Scharmer, G.B., Spruit, H.C.: Magnetostatic penumbra models with field-free gaps. A&A 460, 605(2006). https://doi.org/10.1051/0004-6361:20066019
  21. Schlichenmaier, R., Jahn, K., Schmidt, H.U.: Magnetic flux tubes evolving in sunspots. A model for the penumbral fine structure and the Evershed flow. A&A 337, 897 (1998)Google Scholar
  22. Shimizu, T., Ichimoto, K., Suematsu, Y.: Precursor of Sunspot penumbral formation discovered with Hinode solar optical telescope observations. Astrophys. J. 747, L18 (2012). https://doi.org/10.1088/2041-8205/747/2/L18 ADSCrossRefGoogle Scholar
  23. Solanki, S.K.: Sunspots: an overview. A&ARv 11, 153 (2003). https://doi.org/10.1007/s00159-003-0018-4 ADSCrossRefGoogle Scholar
  24. Solanki, S.K., Montavon, C.A.P.: Uncombed fields as the source of the broad-band circular polarization of sunspots. A&A 275, 283 (1993)ADSGoogle Scholar
  25. Tiwari, S.K., van Noort, M., Lagg, A., Solanki, S.K.: Structure of Sunspot penumbral filaments: a remarkable uniformity of properties. A&A 557, A25 (2013). https://doi.org/10.1051/0004-6361/201321391 ADSCrossRefGoogle Scholar
  26. Toriumi, S., Hayashi, K., Yokoyama, T.: Statistical analysis of the horizontal divergent flow in emerging solar active regions. Astrophys. J. 794, 19 (2014). https://doi.org/10.1088/0004-637X/794/1/19 ADSCrossRefGoogle Scholar
  27. Watanabe, H., Kitai, R., Ichimoto, K., Katsukawa, Y.: Magnetic structure of umbral dots observed with the Hinode solar optical telescope. PASJ 61, 193 (2009). https://doi.org/10.1093/pasj/61.2.193 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.SOLAR-C Project OfficeNational Astronomical Observatory of JapanMitaka, TokyoJapan

Personalised recommendations