New Insights into Sunspots Through Hinode Observations
Abstract
Studies on sunspots have a very long history mostly supported by ground-based observations. However, the detailed evolution of sunspot magnetic field structures are revealed by Hinode observations of accurate photospheric magnetic fields at high spatial resolution under the seeing-free conditions. After the launch of Hinode, the radiative three-dimensional magnetohydrodynamic simulations successfully demonstrated sunspots. The combination of good observations and simulations results in rapid advancement in our knowledge about sunspots. Especially, fine-scale structures in sunspots are commonly understood as a manifestation of the magneto-convection .
Keywords
SunspotsNotes
Acknowledgements
The rapid progress in our understanding of sunspots after the launch of Hinode proves that SOT provides us excellent data. We really appreciate all people who are involved in the development and operation of SOT.
References
- Borrero, J.M., Ichimoto, K.: Magnetic structure of sunspots. Living Rev. Sol. Phys. 8, 4 (2011). https://doi.org/10.12942/lrsp-2011-4
- Borrero, J.M., Solanki, S.K.: Are there field-free gaps near τ = 1 in Sunspot penumbrae? Astrophys. J. 687, 668–677 (2008). https://doi.org/10.1086/591220
- Borrero, J.M., Asensio Ramos, A., Collados, M., et al.: Deep probing of the photospheric Sunspot penumbra: no evidence of field-free gaps. A&A 596, A2 (2016). https://doi.org/10.1051/0004-6361/201628313
- Ichimoto, K., Suematsu, Y., Tsuneta, S., et al.: Twisting motions of Sunspot penumbral filaments. Science 318, 1597 (2007a). https://doi.org/10.1126/science.1146337
- Ichimoto, K., Shine, R.A., Lites, B., et al.: Fine-scale structures of the evershed effect observed by the solar optical telescope aboard Hinode. PASJ 59, S593 (2007b). https://doi.org/10.1093/pasj/59.sp3.S593
- Ilonidis, S., Zhao, J., Kosovichev, A.: Detection of emerging Sunspot regions in the solar interior. Science 333, 993 (2011). https://doi.org/10.1126/science.1206253
- Jurcák, J., Bellot Rubio, L., Ichimoto, K., et al.: The analysis of penumbral fine structure using an advanced inversion technique. PASJ 59, S601 (2007). https://doi.org/10.1093/pasj/59.sp3.S601
- Katsukawa, Y., Yokoyama, T., Berger, T.E., et al.: Formation process of a light bridge revealed with the Hinode solar optical telescope. PASJ 59, S577 (2007). https://doi.org/10.1093/pasj/59.sp3.S577
- Kubo, M., Lites, B.W., Ichimoto, K., et al.: Disintegration of magnetic flux in decaying sunspots as observed with the Hinode SOT. Astrophys. J. 681, 1677–1687 (2008a). https://doi.org/10.1086/588040
- Kubo, M., Lites, B.W., Shimizu, T., Ichimoto, K.: Magnetic flux loss and flux transport in a decaying active region. Astrophys. J. 686, 1447–1453 (2008b). https://doi.org/10.1086/592064
- Lagg, A., Solanki, S.K., van Noort, M., Danilovic, S.: Vigorous convection in a Sunspot granular light bridge. A&A 568, A60 (2014). https://doi.org/10.1051/0004-6361/201424071
- Lites, B.W., Centeno, R., McIntosh, S.W.: The solar cycle dependence of the weak internetwork flux. PASJ 66, S4 (2014). https://doi.org/10.1093/pasj/psu082
- Ortiz, A., Bellot Rubio, L.R., Rouppe van der Voort, L.: Downflows in Sunspot umbral dots. Astrophys. J. 713, 1282 (2010). https://doi.org/10.1088/0004-637X/713/2/1282
- Rempel, M.: Penumbral fine structure and driving mechanisms of large-scale flows in simulated sunspots. Astrophys. J. 729, 5 (2011). https://doi.org/10.1088/0004-637X/729/1/5
- Rempel, M., Cheung, M.C.M.: Numerical simulations of active region scale flux emergence: from spot formation to decay. Astrophys. J. 785, 90 (2014). https://doi.org/10.1088/0004-637X/785/2/90
- Rempel, M., Schlichenmaier, R.: Sunspot modeling: from simplified models to radiative MHD simulations. Living Rev. Sol. Phys. 8, 3 (2011). https://doi.org/10.12942/lrsp-2011-3
- Rempel, M., Schüssler, M., Cameron, R.H., Knölker, M.: Penumbral structure and outflows in simulated sunspots. Science 325, 171 (2009). https://doi.org/10.1126/science.1173798
- Romano, P., Frasca, D., Guglielmino, S.L., et al.: Velocity and magnetic field distribution in a forming penumbra. Astrophys. J. 771, L3 (2013). https://doi.org/10.1088/2041-8205/771/1/L3
- Sakurai, T., et al.: PASJ (Submitted) (2018)Google Scholar
- Scharmer, G.B., Spruit, H.C.: Magnetostatic penumbra models with field-free gaps. A&A 460, 605(2006). https://doi.org/10.1051/0004-6361:20066019
- Schlichenmaier, R., Jahn, K., Schmidt, H.U.: Magnetic flux tubes evolving in sunspots. A model for the penumbral fine structure and the Evershed flow. A&A 337, 897 (1998)Google Scholar
- Shimizu, T., Ichimoto, K., Suematsu, Y.: Precursor of Sunspot penumbral formation discovered with Hinode solar optical telescope observations. Astrophys. J. 747, L18 (2012). https://doi.org/10.1088/2041-8205/747/2/L18 ADSCrossRefGoogle Scholar
- Solanki, S.K.: Sunspots: an overview. A&ARv 11, 153 (2003). https://doi.org/10.1007/s00159-003-0018-4 ADSCrossRefGoogle Scholar
- Solanki, S.K., Montavon, C.A.P.: Uncombed fields as the source of the broad-band circular polarization of sunspots. A&A 275, 283 (1993)ADSGoogle Scholar
- Tiwari, S.K., van Noort, M., Lagg, A., Solanki, S.K.: Structure of Sunspot penumbral filaments: a remarkable uniformity of properties. A&A 557, A25 (2013). https://doi.org/10.1051/0004-6361/201321391 ADSCrossRefGoogle Scholar
- Toriumi, S., Hayashi, K., Yokoyama, T.: Statistical analysis of the horizontal divergent flow in emerging solar active regions. Astrophys. J. 794, 19 (2014). https://doi.org/10.1088/0004-637X/794/1/19 ADSCrossRefGoogle Scholar
- Watanabe, H., Kitai, R., Ichimoto, K., Katsukawa, Y.: Magnetic structure of umbral dots observed with the Hinode solar optical telescope. PASJ 61, 193 (2009). https://doi.org/10.1093/pasj/61.2.193 ADSCrossRefGoogle Scholar