Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 254 Accesses

Abstract

The analysis indicated that the climate patterns were important factors affecting the spatial variation of ecosystem carbon fluxes in different regions of the Northern Hemisphere. In addition to climatic factors, biological factor (vegetation) and land use types are supposed to affect the ecosystem carbon exchange processes (Chapin et al. 2002). For example, the difference in leaf area and growing season length of vegetation will cause spatial variability of carbon fluxes in terrestrial ecosystems (Paster and Post 1993; Potter et al. 1993; Kato and Tang 2008; Baldocchi et al. 2001; Churkina et al. 2005). In addition, the difference in soil conditions is another important potential factor affecting the spatial pattern of carbon fluxes. For example, differences in soil organic carbon content drive the soil respiration of RE greatly varied across space (Gough and Seiler 2004; Rodeghier et al. 2005; Yu et al. 2010; Zheng et al. 2010). Therefore, in order to comprehensively understand the regulatory mechanisms for the spatial variation of carbon fluxes in the Northern Hemisphere, it is necessary to synthetically analyze the effects of climate, vegetation, and soil factors on carbon fluxes and their inner hierarchical relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baldocchi D, Falge E, Gu LH, Olson R, Hollinger D, et al. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteor Soc. 2001;82(11):2415–34.

    Article  Google Scholar 

  • Benjamin JG, Mikha MM, Vigil MF. Organic carbon effects on soil physical and hydraulic properties in a semiarid climate. Soil Sci Soc Am J. 2008;72(5):1357–62.

    Article  CAS  Google Scholar 

  • Chapin FSIII, Matson PA, Mooney HA. Principles of terrestrial ecosystem ecology. New York: Springer-Verlag; 2002. p. 123–228.

    Google Scholar 

  • Chapin FS III, Matson PA, Vitousek PM. Principles of terrestrial ecosystem ecology. New York: Springer; 2011. pp. 97–175.

    Google Scholar 

  • Chen Z, Yu GR, Ge JP, et al. Roles of climate, vegetation and soil in regulating the spatial variability in ecosystem carbon dioxide fluxes in the Northern Hemisphere. PLoS One. 2015;10(4):e0125265.

    Article  PubMed  PubMed Central  Google Scholar 

  • Churkina G, Schimel D, Braswell BH, Xiao XM. Spatial analysis of growing season length control over net ecosystem exchange. Glob Change Biol. 2005;11(10):1777–87.

    Article  Google Scholar 

  • Cramer W, Kicklighter DW, Bondeau A, Moore B, Churkina G, et al. Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Glob Change Biol. 1999;5:1–15.

    Article  Google Scholar 

  • Dunn AL, Barford CC, Wofsy SC, Goulden ML, Daube BC. A long-term record of carbon exchange in a boreal black spruce forest: means, responses to interannual variability, and decadal trends. Glob Change Biol. 2007;13(3):577–90.

    Article  Google Scholar 

  • Fernández-Martínez M, Vicca S, Janssens IA, Sardans J, Luyssaert S, et al. Nutrient availability as the key regulator of global forest carbon balance. Nat Clim Change. 2014;4(6):471–6.

    Article  Google Scholar 

  • Gough CM, Seiler JR. The influence of environmental, soil carbon, root and stand characteristics on soil CO2 efflux in loblolly pine (Pinus taeda L.) plantations located on the South Carolina Coastal Plain. For Ecol Manage. 2004;191(1–3):353–63.

    Article  Google Scholar 

  • Hirata R, Saigusa N, Yamamoto S, Ohtani Y, Ide R, et al. Spatial distribution of carbon balance in forest ecosystems across East Asia. Agric For Meteorol. 2008;148(5):761–75.

    Article  Google Scholar 

  • Huete A, Didan K, Miura T, Rodriguez EP, Gao X, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ. 2002;83(1–2):195–213.

    Article  Google Scholar 

  • Jobbagy EG, Jackson RB. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl. 2000;10(2):423–36.

    Article  Google Scholar 

  • Kato T, Tang YH. Spatial variability and major controlling factors of CO2 sink strength in Asian terrestrial ecosystems: evidence from eddy covariance data. Glob Change Biol. 2008;14(10):2333–48.

    Article  Google Scholar 

  • LeBauer DS, Treseder KK. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology. 2008;89(2):371–9.

    Article  PubMed  Google Scholar 

  • Lieth H. Primary production: terrestrial ecosystems. Human Ecol. 1973;1(4):303–32.

    Article  Google Scholar 

  • Manlay RJ, Feller C, Swift MJ. Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. Agric For Meteorol. 2007;119(3–4):217–33.

    Google Scholar 

  • Paster J, Post WM. Linear regressions do not predict the transient responses of Eastern North American forests to CO2—induced climate change. Clim Change. 1993;23:111–9.

    Article  Google Scholar 

  • Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, et al. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochem Cycles. 1993;7(4):811–41.

    Article  Google Scholar 

  • Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, et al. A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr. 1992;19(2):117–34.

    Article  Google Scholar 

  • Prentice KC. Bioclimatic distribution of vegetation for general circulation model studies. J Geophys Res. 1990;95(D8):11811–30.

    Article  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS. Leaf life-span in relation to leaf, plant, and stand processes in diverse ecosystems. Ecol Monogr. 1992;62(3):365–92.

    Article  Google Scholar 

  • Rodeghiero M, Cescatti A. Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps. Glob Change Biol. 2005;11(7):1024–41.

    Article  Google Scholar 

  • Vitousek PM, Porder S, Houlton BZ, Chadwick OA. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol Appl. 2010;20(1):5–15.

    Article  PubMed  Google Scholar 

  • Yu GR, Zheng ZM, Wang QF, Fu YL, Zhuang J, et al. Spatiotemporal pattern of soil respiration of terrestrial ecosystems in China: the development of a geostatistical model and its simulation. Environ Sci Technol. 2010;44(16):6074–80.

    Article  CAS  PubMed  Google Scholar 

  • Zheng ZM, Yu GR, Sun XM, Li SG, Wang YS, et al. Spatio-temporal variability of soil respiration of forest ecosystems in China: influencing factors and evaluation model. Environ Manage. 2010;46(4):633–42.

    Article  PubMed  Google Scholar 

  • Zhou XH, Talley M, Luo YQ. Biomass, litter, and soil respiration along a precipitation gradient in Southern Great Plains. USA. Ecosyst. 2009;12(8):1369–80.

    Article  CAS  Google Scholar 

  • Woodward FI, Williams BG. Climate and plant distribution at global and local scales. Vegetatio. 1987;69(1-3):189-197.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Z. (2018). Mechanisms for Spatial Pattern of Carbon Fluxes. In: Spatial Patterns and Mechanisms for Terrestrial Ecosystem Carbon Fluxes in the Northern Hemisphere. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-7703-6_7

Download citation

Publish with us

Policies and ethics