Skip to main content

Hydrogen from Photo Fermentation

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Hydrogen is considered to be a promising future fuel for the transportation sector due to its zero carbon emissions and high energy capacity by mass. Nevertheless, an energy-saving and environmentally friendly hydrogen production pathway has not yet been achieved on an industrial scale. Hydrogen may be produced from waste streams during photofermentation using purple non-sulfur bacteria (PNSB) . This process has unique advantages, such as high hydrogen yield and environment benefits. This chapter provides an overview of PNSB and its enzyme system used in photofermentative hydrogen production, factors affecting fermentation , and hydrogen production from industrial waste, wastewater, and agricultural biomass. Both suspension and immobilized cultures of PNSB used in various types of photobioreactors are discussed in detail. Furthermore, the fluid flow and mass transfer in bioreactors using lattice Boltzmann simulation are presented. Enhancement strategies and perspectives of photofermentative hydrogen production are also outlined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Baêta BE, Lima DR, Filho JG, Adarme OF, Gurgel LV, Aquino SF (2016) Evaluation of hydrogen and methane production from sugarcane bagasse hemicellulose hydrolysates by two-stage anaerobic digestion process. Bioresource Technol 218:436–446

    Article  Google Scholar 

  2. Nath K, Das D (2004) Improvement of fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol 65(5):520–529

    Article  Google Scholar 

  3. Sittijunda S, Reungsang A (2017) Fermentation of hydrogen, 1,3-propanediol and ethanol from glycerol as affected by organic loading rate using up-flow anaerobic sludge blanket (UASB) reactor. Int J Hydrogen Energ 42(45):27558–27569

    Article  Google Scholar 

  4. Hallenbeck PC (2013) Photofermentative biohydrogen production

    Chapter  Google Scholar 

  5. Hallenbeck PC (2009) D. G. Advances in fermentative biohydrogen production: the way forward. Trends Biotechnol 27:287–297

    Article  Google Scholar 

  6. Liu Y, Hallenbeck PC (2016) A kinetic study of hydrogen production by a Calvin-Benson-Bassham cycle mutant, PRK (phosphoribulose kinase), of the photosynthetic bacterium Rhodobacter capsulatus. Int J Hydrogen Energ 41(26):11081–11089

    Article  Google Scholar 

  7. Zhang Q, Wang Y, Zhang Z, Lee DJ, Zhou X, Jing Y et al (2017) Photo-fermentative hydrogen production from crop residue: A mini review. Bioresource Technol 229:222–230

    Article  Google Scholar 

  8. Zhang Z, Zhou X, Hu J, Zhang T, Zhu S, Zhang Q (2017) Photo-bioreactor structure and light-heat-mass transfer properties in photo-fermentative bio-hydrogen production system: A mini review. Int J Hydrogen Energ 42(17):12143–12152

    Article  Google Scholar 

  9. Shahzad MS, Iqbal QJ, Zhao Q, Chen S (2013) Photo-biohydrogen production potential of Rhodobacter capsulatus-PK from wheat straw. Biotechnol Biofuels 6(1):144–156

    Article  Google Scholar 

  10. Pott RWM, Howe CJ, Dennis JS (2013) Photofermentation of crude glycerol from biodiesel using Rhodopseudomonas palustris: Comparison with organic acids and the identification of inhibitory compounds. Bioresource Technol 130(1):725–730

    Article  Google Scholar 

  11. Pott RW, Howe CJ, Dennis JS (2014) The purification of crude glycerol derived from biodiesel manufacture and its use as a substrate by Rhodopseudomonas palustris to produce hydrogen. Bioresource Technol 152(1):464–470

    Article  Google Scholar 

  12. Seifert K, Waligorska M, Laniecki M (2010) Brewery wastewaters in photobiological hydrogen generation in presence of Rhodobacter sphaeroides O.U. 001. Int J Hydrogen. Energ 35(9):4085–4091

    Google Scholar 

  13. Seifert K, Waligorska M, Laniecki M (2010) Hydrogen generation in photobiological process from dairy wastewater. Int J Hydrogen Energ 35(18):9624–9629

    Article  Google Scholar 

  14. Niel CBV (1944) The culture, general physiology, morphology, and classification of the non-fulfur purple and brown bacteria. Bacteriol Rev 8(1):1–118

    Google Scholar 

  15. JF. I. Anoxygenic photosynthetic bacteria. In: Blankenship RE, Madigan MT, Bauer CE, editors. Taxonomy and physiology of purple bacteria and green sulfur bacteria, USA: Kluwer Academic Publishers. 1995

    Google Scholar 

  16. Tao Y, He Y, Wu Y, Liu F, Li X, Zong W et al (2008) Characteristics of a new photosynthetic bacterial strain for hydrogen production and its application in wastewater treatment. Int J Hydrogen Energ 33(3):963–973

    Article  Google Scholar 

  17. Assawamongkholsiri T, Reungsang A (2015) Photo-fermentational hydrogen production of Rhodobacter sp. KKU-PS1 isolated from an UASB reactor. Electron. J Biotechnol 18(3):221–230

    Google Scholar 

  18. Laocharoen S, Reungsang A (2014) Isolation, characterization and optimization of photo-hydrogen production conditions by newly isolated Rhodobacter sphaeroides KKU-PS5. Int J Hydrogen Energ 39(21):10870–10882

    Article  Google Scholar 

  19. Larimer FW, Chain P, Hauser L, Lamerdin J, Malfatti S, Long D et al (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 22(1):55–61

    Article  Google Scholar 

  20. Harwood CS (2009) Degradation of aromatic compounds by purple nonsulfur bacteria. Springer, Netherlands

    Book  Google Scholar 

  21. Luongo V, Ghimire A, Frunzo L, Fabbricino M, D’Antonio G, Pirozzi F et al (2016) Photofermentative production of hydrogen and poly-β-hydroxybutyrate from dark fermentation products. Bioresource Technol 228:171–175

    Article  Google Scholar 

  22. Ghimire A, Valentino S, Frunzo L, Trably E, Escudié R, Pirozzi F et al (2015) Biohydrogen production from food waste by coupling semi-continuous dark-photofermentation and residue post-treatment to anaerobic digestion: A synergy for energy recovery. Int J Hydrogen Energ 40(46):16045–16055

    Article  Google Scholar 

  23. Hay JX, Wu TY, Juan JC, Md JJ (2017) Effect of adding brewery wastewater to pulp and paper mill effluent to enhance the photofermentation process: wastewater characteristics, biohydrogen production, overall performance, and kinetic modeling. Environ Sci Pollut Res Int 24(11):1–10

    Article  Google Scholar 

  24. Kim DH, Son H, Kim MS (2012) Effect of substrate concentration on continuous photo-fermentative hydrogen production from lactate using Rhodobacter sphaeroides. Int J Hydrogen Energ 37(20):15483–15488

    Article  Google Scholar 

  25. Kim MS, Kim DH, Cha J (2012) JK. L. Effect of carbon and nitrogen sources on photo-fermentative H2 production associated with nitrogenase, uptake hydrogenase activity, and PHB accumulation in Rhodobacter sphaeroides KD131. Bioresource Technol 116(4):176–183

    Google Scholar 

  26. Basak N, Das D (2007) The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: the present state of the art. World J Microb Biot 23(1):31–42

    Article  Google Scholar 

  27. Obeid J, Flaus JM, Adrot O, Magnin JP, Willison JC (2010) State estimation of a batch hydrogen production process using the photosynthetic bacteria Rhodobacter capsulatus. Int J Hydrog Energy 35(19):10719–10724

    Article  Google Scholar 

  28. Keskin T, Hallenbeck PC (2012) Hydrogen production from sugar industry wastes using single-stage photofermentation. Bioresour Technol 112(4):131–136

    Article  Google Scholar 

  29. Androga DD, Sevinç P, Koku H, Yücel M, Gündüz U, Eroglu I (2014) Optimization of temperature and light intensity for improved photofermentative hydrogen production using Rhodobacter capsulatus DSM 1710. Int J Hydrog Energy 39(6):2472–2480

    Article  Google Scholar 

  30. Liu BF, Jin YR, Cui QF, Xie GJ, Wu YN, Ren NQ (2015) Photo-fermentation hydrogen production by Rhodopseudomonas sp. nov. strain A7 isolated fromthe sludge in a bioreactor. Int J Hydrog Energy 40(28):8661–8668

    Article  Google Scholar 

  31. Bianchi L, Mannelli F, Viti C, Adessi A, Philippis RD (2010) Hydrogen-producing purple non-sulfur bacteria isolated from the trophic lake Averno (Naples, Italy). Int J Hydrog Energy 35(22):12216–12223

    Article  Google Scholar 

  32. Carlozzi P, Buccioni A, Minieri S, Pushparaj B, Piccardi R, Ena A et al (2010) Production of bio-fuels (hydrogen and lipids) through a photofermentation process. Bioresour Technol 101(9):3115–3120

    Article  Google Scholar 

  33. Cheng J, Su H, Zhou J, Song W, Cen K (2011) Hydrogen production by mixed bacteria through dark and photo fermentation. Int J Hydrog Energy 36(1):450–457

    Article  Google Scholar 

  34. Shi XY, Yu HQ (2006) Continuous production of hydrogen from mixed volatile fatty acids with Rhodopseudomonas capsulata. Int J Hydrog Energy 31(12):1641–1647

    Article  Google Scholar 

  35. Hosseini SS, Aghbashlo M, Tabatabaei M, Younesi H, Najafpour G (2015) Exergy analysis of biohydrogen production from various carbon sources via anaerobic photosynthetic bacteria (Rhodospirillum rubrum). Energy 93:730–739

    Article  Google Scholar 

  36. Cai J, Wang G (2012) Hydrogen production by a marine photosynthetic bacterium, Rhodovulum sulfidophilum P5, isolated from a shrimp pond. Int J Hydrog Energy 37(20):15070–15080

    Article  Google Scholar 

  37. Sasikala K, Ramana CV, Rao PR (1991) Environmental regulation for optimal biomass yield and photoproduction of hydrogen by Rhodobacter sphaeroides O.U. 001. Int J Hydrog Energy 16(9):597–601

    Article  Google Scholar 

  38. Miyake J, Wakayama T, Schnackenberg J, Arai T, Asada Y (1999) Simulation of the daily sunlight illumination pattern for bacterial photo-hydrogen production. J Biosci Bioeng 88(6):659–663

    Article  Google Scholar 

  39. Adessi A, Torzillo G, Baccetti E, Philippis RD (2012) Sustained outdoor H2 production with Rhodopseudomonas palustris cultures in a 50-L tubular photobioreactor. Int J Hydrog Energy 37(10):8840–8849

    Article  Google Scholar 

  40. Imhoff JF, Hiraishi A, Süling J (2005) Anoxygenic phototrophic purple bacteria. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology. Springer, New York

    Google Scholar 

  41. Muzziotti D, Adessi A, Faraloni C, Torzillo G, De PR (2016) H2 production in Rhodopseudomonas palustris as a way to cope with high light intensities. Res Microbiol 167(5):350–356

    Article  Google Scholar 

  42. Yang H, Jing Z, Wang X, Feng J, Wei Y, Guo L (2014) A newly isolated Rhodobacter sphaeroides HY01 with high hydrogen production performance. Int J Hydrog Energy 39(19):10051–10060

    Article  Google Scholar 

  43. Budiman PM, Wu TY, Ramanan RN, Jahim JM (2015) Improvement of biohydrogen production through combined reuses of palm oil mill effluent together with pulp and paper mill effluent in photofermentation. Energy Fuel 29(9):5816–5824

    Article  Google Scholar 

  44. Hay JXW, Wu TY, Ng BJ, Juan JC, Jahim JM (2016) Reusing pulp and paper mill effluent as a bioresource to produce biohydrogen through ultrasonicated Rhodobacter sphaeroides. Energy Convers Manage 113:273–280

    Article  Google Scholar 

  45. Budiman PM, Wu TY, Ramanan RN, Jahim JM (2017) Improving photofermentative biohydrogen production by using intermittent ultrasonication and combined industrial effluents from palm oil, pulp and paper mills. Energy Convers Manage 132:110–118

    Article  Google Scholar 

  46. Budiman PM, Wu TY, Ramanan RN, Md JJ (2017) Reusing colored industrial wastewaters in a photofermentation for enhancing biohydrogen production by using ultrasound stimulated Rhodobacter sphaeroides. Environ Sci Pollut Res Int 24(19):15870–15881

    Article  Google Scholar 

  47. Montiel CV, Le BS, Revah S, Morales M (2017) Effect of light-dark cycles on hydrogen and poly-Î2-hydroxybutyrate production by a photoheterotrophic culture and Rhodobacter capsulatus using a dark fermentation effluent as substrate. Bioresour Technol 226:238–246

    Article  Google Scholar 

  48. Chen X, Lv Y, Liu Y, Ren R, Zhao J (2017) The hydrogen production characteristics of mixed photoheterotrophic culture. Int J Hydrog Energy 42(8):4840–4847

    Article  Google Scholar 

  49. Sun MLY, Liu Y (2015) A new hydrogen-producing strain and its characterization of hydrogen production. Appl Biochem Biotechnol 177:1676–1689

    Article  Google Scholar 

  50. Phankhamla P, Sawaengkaew J, Buasri P, Mahakhan P (2014) Biohydrogen production by a novel thermotolerant photosynthetic bacterium Rhodopseudomonas pentothenatexigens strain KKU-SN1/1. Int J Hydrog Energy 39(28):15424–15432

    Article  Google Scholar 

  51. Chen CY, Liu CH, Lo YC, Chang JS (2011) Perspectives on cultivation strategies and photobioreactor designs for photo-fermentative hydrogen production. Bioresource Technol 102(18):8484–8492

    Article  Google Scholar 

  52. Gest H, Kamen MD (1982) Photoproduction of molecular hydrogen by Rhodospirillum rubrum. Science 109:558–559

    Article  Google Scholar 

  53. Miyake J, Tomizuka N, Kamibayashi A (1982) Prolonged photo-hydrogen production by Rhodospirillum rubrum. J Ferment Technol 60:199–203

    Google Scholar 

  54. Barbosa MJ, Rocha JM, Tramper J, Wijffels RH (2001) Acetate as a carbon source for hydrogen production by photosynthetic bacteria. J Biotechnol 85(1):25–33

    Article  Google Scholar 

  55. Han H, Liu B, Yang H, Shen J (2012) Effect of carbon sources on the photobiological production of hydrogen using Rhodobacter sphaeroides RV. Int J Hydrogen Energ 37(17):12167–12174

    Article  Google Scholar 

  56. Mohan SV, Mohanakrishna GSS (2011) Biohydrogen production from industrial effluents. In: Pandey A, Larroche C, Ricke SC, Dussap CG, Gnansounou E (eds) Biofuels: alternative feedstocks and conversion processes. Elsevier, USA

    Google Scholar 

  57. Ghosh D, Tourigny A, Hallenbeck PC (2012) Near stoichiometric reforming of biodiesel derived crude glycerol to hydrogen by photofermentation. Int J Hydrog Energy 37(3):2273–2277

    Article  Google Scholar 

  58. Chen CY, Yeh KL, Lo YC, Wang HM, Chang JS (2010) Engineering strategies for the enhanced photo-H2 production using effluents of dark fermentation processes as substrate. Int J Hydrog Energy 35(24):13356–13364

    Article  Google Scholar 

  59. Su H, Cheng J, Zhou J, Song W, Cen K (2010) Hydrogen production from water hyacinth through dark- and photo- fermentation. Int J Hydrog Energy 35(17):8929–8937

    Article  Google Scholar 

  60. Özgür E, Uyar B, Öztürk Y, Yücel M, Gündüz U, Eroğlu I (2010) Biohydrogen production by Rhodobacter capsulatus on acetate at fluctuating temperatures. Resour Conserv Recycl 54(5):310–314

    Article  Google Scholar 

  61. Mishra P, Thakur S, Singh L, Wahid ZA, Sakinah M (2016) Enhanced hydrogen production from palm oil mill effluent using two stage sequential dark and photo fermentation. Int J Hydrog Energy 41(41):18431–18440

    Article  Google Scholar 

  62. Nasr M, Tawfik A, Ookawara S, Suzuki M, Kumari S, Bux F (2015) Continuous biohydrogen production from starch wastewater via sequential dark-photo fermentation with emphasize on maghemite nanoparticles. J Ind Eng Chem 21(1):500–506

    Article  Google Scholar 

  63. Chookaew T, O-Thong S, Prasertsan P (2015) Biohydrogen production from crude glycerol by two stage of dark and photo fermentation. Int J Hydrog Energy 40(24):7433–8

    Article  Google Scholar 

  64. Cheng J, Ding L, Ao X, Lin R, Li Y, Zhou J et al (2015) Hydrogen production using amino acids obtained by protein degradation in waste biomass by combined dark- and photo-fermentation. Bioresour Technol 179:13–19

    Article  Google Scholar 

  65. Yang H, Shi B, Ma H, Guo L (2015) Enhanced hydrogen production from cornstalk by dark- and photo-fermentation with diluted alkali-cellulase two-step hydrolysis. Int J Hydrog Energy 40(36):12193–12200

    Article  Google Scholar 

  66. Rai PK, Asthana RK, Singh SP (2014) Optimization of photo-hydrogen production based on cheese whey spent medium. Int J Hydrog Energy 39(14):7597–7603

    Article  Google Scholar 

  67. Afsar N, Özgür E, Gürgan M, Akköse S, Yücel M, Gündüz U et al (2011) Hydrogen productivity of photosynthetic bacteria on dark fermenter effluent of potato steam peels hydrolysate. Int J Hydrog Energy 36(1):432–438

    Article  Google Scholar 

  68. Zong WM, Yu RS, Zhang P, Fan MZ, Zhou ZH (2009) Efficient hydrogen gas production from cassava and food waste by a two-step process of dark fermentation and photo-fermentation. Biomass Bioenergy 33(10):1458–1463

    Article  Google Scholar 

  69. Argun H, Kargi F, Kapdan IK (2009) Hydrogen production by combined dark and light fermentation of ground wheat solution. Int J Hydrog Energy 34(10):4305–4311

    Article  Google Scholar 

  70. Hitit ZY, Lazaro CZ, Hallenbeck PC (2016) Single stage hydrogen production from cellulose through photo-fermentation by a co-culture of Cellulomonas fimi and Rhodopseudomonas palustris. Int J Hydrog Energy 42(10):6556–6566

    Article  Google Scholar 

  71. Xie GJ, Feng LB, Ren NQ, Ding J, Liu C, Xing DF et al (2010) Control strategies for hydrogen production through co-culture of Ethanoligenens harbinense B49 and immobilized Rhodopseudomonas faecalis RLD-53. Int J Hydrog Energy 35(5):1929–1935

    Article  Google Scholar 

  72. Liu BF, Ren NQ, Tang J, Ding J, Liu WZ, Xu JF et al (2010) Bio-hydrogen production by mixed culture of photo- and dark-fermentation bacteria. Int J Hydrog Energy 35(7):2858–2862

    Article  Google Scholar 

  73. Smil V (2004) The transformation of world food production. In: Haber F, Bosch C (eds) Enriching the Earth. The MIT Press, Cambridge

    Google Scholar 

  74. Gloe A, Pfennig N Jr, Brockmann H, Trowitzsch W (1975) A new bacteriochlorophyll from brown-colored Chlorobiaceae. Arch Microbiol 102(1):103–9

    Google Scholar 

  75. Eady RR (1996) Structure—function relationships of alternative nitrogenases. Chem Rev 96(7):3013–3030

    Article  Google Scholar 

  76. Hu Y, Lee CC, Ribbe MW (2012) Vanadium nitrogenase: a two-hit wonder? Dalton Trans 41:1118–1127

    Article  Google Scholar 

  77. Tan JW, Thong KL, Arumugam ND, Cheah WL, Lai YW, Chua KH et al (2009) Development of a PCR assay for the detection of and genes in indigenous photosynthetic bacteria. Int J Hydrog Energy 34(17):7538–7541

    Article  Google Scholar 

  78. Burgess BK, Lowe DJ (1996) Mechanism of molybdenum nitrogenase. Chem Rev 96(7):2983–3012

    Article  Google Scholar 

  79. Igarashi RY, Seefeldt LC (2003) Nitrogen fixation: The mechanism of the mo-dependent nitrogenase. Crit Rev Biochem Mol Biol 38(4):351–384

    Article  Google Scholar 

  80. Hu Y, Ribbe MW (2013) Nitrogenase assembly. Biochim Biophys Acta 1827(8–9):1112–1122

    Article  Google Scholar 

  81. Seefeldt LC, Yang ZY, Duval S, Dean DR (2013) Nitrogenase reduction of carbon-containing compounds. Biochim Biophys Acta 1827(8–9):1102–1111

    Article  Google Scholar 

  82. Akkerman I, Janssen M, Rocha J, Wijffels RH (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrog Energy 27(11–12):1195–1208

    Article  Google Scholar 

  83. Redwood MD, Paterson-Beedle M, Macaskie LE (2009) Integrating dark and light bio-hydrogen production strategies: Towards the hydrogen economy. Rev Environ Sci Biotechnol 8(2):149–185

    Article  Google Scholar 

  84. Vignais PM, Colbeau A, Willison JC, Jouanneau Y (1985) Hydrogenase, nitrogenase, and hydrogen metabolism in the photosynthetic bacteria. Adv Microb Physiol 26(10):155–234

    Article  Google Scholar 

  85. Hillmer P, Gest H (1977) H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: Production and utilization of H2 by resting cells. J Bacteriol 129(2):732–739

    Google Scholar 

  86. Chen CY, Saratale GD, Lee CM, Chen PC, Chang JS (2008) Phototrophic hydrogen production in photobioreactors coupled with solar-energy-excited optical fibers. Int J Hydrog Energy 33(23):6886–6895

    Article  Google Scholar 

  87. Schneider K, Gollan U, Dröttboom M, Selsemeier-Voigt S, Müller A (1997) Comparative biochemical characterization of the iron-only nitrogenase and the molybdenum nitrogenase from Rhodobacter capsulatus. Eur J Biochem 244(3):789–800

    Article  Google Scholar 

  88. Oda Y, Samanta SK, Rey FE, Wu L, Liu X, Yan T et al (2005) Functional genomic analysis of three nitrogenase isozymes in the photosynthetic bacterium Rhodopseudomonas palustris. J Bacteriol 187(22):7784–7794

    Article  Google Scholar 

  89. Meyer J (2007) [FeFe] hydrogenases and their evolution: a genomic perspective. Cell Mol Life Sci 64(9):1063–1084

    Article  Google Scholar 

  90. Cammack R, Frey MRR (2001) Hydrogen as a fuel. In: Shimas S, Thauer RK (eds) A third type of hydrogenase catalyzing H2 activation. Taylor & Francis, London

    Google Scholar 

  91. Shima S, Thauer RK (2007) A third type of hydrogenase catalyzing H2 activation. Chem Rec 7(1):37–46

    Article  Google Scholar 

  92. Koku H, Eroğlu İ, Gündüz U, Yücel M, Türker L (2002) Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. Int J Hydrog Energy 27(11–12):1315–1329

    Article  Google Scholar 

  93. Donghoon K, Misun K, Pandey A, Lee DJ, Chang JS, Guwy AJ (2011) Hydrogenases for biological hydrogen production. Bioresour Technol 102(18):8423–8431

    Article  Google Scholar 

  94. Goldet G, Brandmayr C, Stripp ST, Happe T, Cavazza C, Fontecilla-Camps JC et al (2009) Electrochemical kinetic investigations of the reactions of [FeFe]-hydrogenases with carbon monoxide and oxygen: comparing the importance of gas tunnels and active-site electronic/redox effects. J Am Chem Soc 131(41):14979–14989

    Article  Google Scholar 

  95. Hexter SV, Grey F, Happe T, Climent V, Armstrong FA (2012) Electrocatalytic mechanism of reversible hydrogen cycling by enzymes and distinctions between the major classes of hydrogenases. Proc Natl Acad Sci 109(29):11516–11521

    Article  Google Scholar 

  96. Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases1. FEMS Microbiol Rev 25(4):455–501

    Article  Google Scholar 

  97. Wakayama TJM (2001) Hydrogen from biomass. In: Miyake J, Matsunaga T, San Pietro A (eds) Biohydrogen II: an approach to environmentally acceptable technology. Oxford, Pergamon

    Chapter  Google Scholar 

  98. Sasikala K, Ramana CV, Rao PR, Subrahmanyam M (1990) Effect of gas phase on the photoproduction of hydrogen and substrate conversion efficiency in the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001. Int J Hydrog Energy 15(11):795–797

    Article  Google Scholar 

  99. Willison JC, Madern D, Vignais PM (1984) Increased photoproduction of hydrogen by non-autotrophic mutants of Rhodopseudomonas capsulata. Biochem J 219(2):593–600

    Article  Google Scholar 

  100. Jahn A, Keuntje B, Dörffler M, Klipp W, Oelze J (1994) Optimizing photoheterotrophic H2 production by Rhodobacter capsulatus upon interposon mutagenesis in the hupl gene. Appl Microbiol Biotechnol 40(5):687–690

    Article  Google Scholar 

  101. Zorin NA, Lissolo T, Colbeau A, Vignais PM (1996) Increased hydrogen photoproduction by Rhodobactor capsulatus strain deficient in uptake hydrogenase. J Mar Biotechnol 4(1):28–33

    Google Scholar 

  102. Öztürk Y, Yücel M, Daldal F, Mandacı S, Gündüz U, Türker L et al (2006) Hydrogen production by using Rhodobacter capsulatus mutants with genetically modified electron transfer chains. Int J Hydrog Energy 31(11):1545–1552

    Article  Google Scholar 

  103. Chen CY, Chang JS (2006) Enhancing phototropic hydrogen production by solid-carrier assisted fermentation and internal optical-fiber illumination. Process Biochem 41(9):2041–2049

    Article  Google Scholar 

  104. Fang HHP, Liu H, Zhang T (2005) Phototrophic hydrogen production from acetate and butyrate in wastewater. Int J Hydrog Energy 30(7):785–793

    Article  Google Scholar 

  105. Sagnak R, Kargi F (2011) Photo-fermentative hydrogen gas production from dark fermentation effluent of acid hydrolyzed wheat starch with periodic feeding. Int J Hydrog Energy 36(7):4348–4353

    Article  Google Scholar 

  106. Ozmihci S, Kargi F (2010) Bio-hydrogen production by photo-fermentation of dark fermentation effluent with intermittent feeding and effluent removal. Int J Hydrog Energy 35(13):6674–6680

    Article  Google Scholar 

  107. Lo YC, Chen CY, Lee CM, Chang JS (2011) Photo fermentative hydrogen production using dominant components (acetate, lactate, and butyrate) in dark fermentation effluents. Int J Hydrog Energy 36(21):14059–14068

    Article  Google Scholar 

  108. Pintucci C, Giovannelli A, Traversi ML, Ena A, Padovani G, Carlozzi P (2013) Fresh olive mill waste deprived of polyphenols as feedstock for hydrogen photo-production by means of Rhodopseudomonas palustris 42OL. Renew Energy 51(2):358–363

    Article  Google Scholar 

  109. Morsy FM (2017) Synergistic dark and photo-fermentation continuous system for hydrogen production from molasses by Clostridium acetobutylicum ATCC 824 and Rhodobacter capsulatus DSM 1710. J Photochem Photobiol B 169(1):1–6

    Article  Google Scholar 

  110. Koku H, Eroǧlu İ, Gündüz U, Yücel M, Türker L (2003) Kinetics of biological hydrogen production by the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001. Int J Hydrog Energy 28(4):381–388

    Article  Google Scholar 

  111. Eroglu N, Aslan K, Gündüz U, Yücel M, Türker L (1999) Substrate consumption rates for hydrogen production by Rhodobacter sphaeroides in a column photobioreactor. J Biotechnol 70(1):103–113

    Article  Google Scholar 

  112. Oh YK, Seol EH, Kim MS, Park S (2004) Photoproduction of hydrogen from acetate by a chemoheterotrophic bacterium Rhodopseudomonas palustris P4. Int J Hydrog Energy 29(11):1115–1121

    Google Scholar 

  113. Abo-Hashesh M, Desaunay N, Hallenbeck PC (2013) High yield single stage conversion of glucose to hydrogen by photofermentation with continuous cultures of Rhodobacter capsulatus JP91. Bioresour Technol 128(128C):513–517

    Article  Google Scholar 

  114. Lee JZ, Klaus DM, Maness PC, Spear JR (2007) The effect of butyrate concentration on hydrogen production via photofermentation for use in a Martian habitat resource recovery process. Int J Hydrog Energy 32(15):3301–3307

    Article  Google Scholar 

  115. Chen CY, Lu WB, Wu JF, Chang JS (2007) Enhancing phototrophic hydrogen production of Rhodopseudomonas palustris via statistical experimental design. Int J Hydrog Energy 32(8):940–949

    Article  Google Scholar 

  116. Takabatake H, Suzuki K, Ko IB, Noike T (2004) Characteristics of anaerobic ammonia removal by a mixed culture of hydrogen producing photosynthetic bacteria. Bioresour Technol 95(2):151–158

    Article  Google Scholar 

  117. Fascetti E, Todini O (1995) Rhodobacter sphaeroides RV cultivation and hydrogen production in a one- and two-stage chemostat. Appl Microbiol Biotechnol 44(3–4):300–305

    Article  Google Scholar 

  118. Chen CY, Lee CM, Chang JS (2006) Feasibility study on bioreactor strategies for enhanced photohydrogen production from Rhodopseudomonas palustris WP3-5 using optical-fiber-assisted illumination systems. Int J Hydrog Energy 31(15):2345–2355

    Article  Google Scholar 

  119. Shi XY, Yu HQ (2005) Optimization of glutamate concentration and pH for H2 production from volatile fatty acids by Rhodopseudomonas capsulata. Lett Appl Microbiol 40(6):401–406

    Article  Google Scholar 

  120. Wu YN, Wen HQ, Zhu JN, Ding J, Ren NQ, Liu BF (2016) Best mode for photo-fermentation hydrogen production: The semi-continuous operation. Int J Hydrog Energy 41(36):16048–16054

    Article  Google Scholar 

  121. Assawamongkholsiri T, Plangklang P, Reungsang A (2016) Photofermentaion and lipid accumulation by Rhodobacter sp. KKU-PS1 using malic acid as a substrate. Int J Hydrog Energy 41(15):6259–6270

    Article  Google Scholar 

  122. Liu B, Jin Y, Wang Z, Xing D, Ma C, Ding J et al (2017) Enhanced photo-fermentative hydrogen production of Rhodopseudomonas sp. nov. strain A7 by the addition of TiO2, ZnO and SiC nanoparticles. Int J Hydrog Energy 42:18279–18287

    Article  Google Scholar 

  123. Zhang Y, Yang H, Guo L (2016) Enhancing photo-fermentative hydrogen production performance of Rhodobacter capsulatus by disrupting methylmalonate-semialdehyde dehydrogenase gene. Int J Hydrog Energy 41(1):190–197

    Article  Google Scholar 

  124. Subudhi S, Mogal SK, Kumar NR, Nayak T, Lal B, Velankar H et al (2016) Photo fermentative hydrogen production by a new strain; Rhodobacter sphaeroides CNT 2A, isolated from pond sediment. Int J Hydrog Energy 41(32):13979–13985

    Article  Google Scholar 

  125. Wen HQ, Du J, Xing DF, Ding J, Ren NQ, Liu BF (2017) Enhanced photo-fermentative hydrogen production of Rhodopseudomonas sp. nov. strain A7 by biofilm reactor. Int J Hydrog Energy 42:18288–94

    Article  Google Scholar 

  126. Zagrodnik R (2016) M Ł. Hydrogen production from starch by co-culture of Clostridium acetobutylicum and Rhodobacter sphaeroides in one step hybrid dark- and photofermentation in repeated fed-batch reactor. Bioresour Technol 224:298–306

    Article  Google Scholar 

  127. Zagrodnik R, Łaniecki M (2017) The effect of pH on cooperation between dark- and photo-fermentative bacteria in a co-culture process for hydrogen production from starch. Int J Hydrog Energy 42(5):2878–2888

    Article  Google Scholar 

  128. Hu J, Zhang Q, Jing Y, Lee DJ (2016) Photosynthetic hydrogen production from enzyme-hydrolyzed micro-grinded maize straws. Int J Hydrog Energy 41(46):21665–21669

    Article  Google Scholar 

  129. Shi XY, Yu HQ (2005) Response surface analysis on the effect of cell concentration and light intensity on hydrogen production by Rhodopseudomonas capsulata. Process Biochem 40(7):2475–2481

    Article  Google Scholar 

  130. Bowles LK, Ellefson WL (1985) Effects of butanol on Clostridium acetobutylicum. Appl Environ Microbiol 50(5):1165–1170

    Google Scholar 

  131. Lazaro CZ, Varesche MBA, Silva EL (2015) Effect of inoculum concentration, pH, light intensity and lighting regime on hydrogen production by phototrophic microbial consortium. Renew Energy 75:1–7

    Article  Google Scholar 

  132. Krahn E, Schneider K, Müller A (1996) Comparative characterization of H2 production by the conventional Mo nitrogenase and the alternative “iron-only” nitrogenase of Rhodobacter capsulatus hup—mutants. Appl Microbiol Biotechnol 46(3):285–290

    Article  Google Scholar 

  133. Yu KM, Lee CM (2003) The study of limiting factor for the photo-hydrogen production with purple non-sulfate bacterium. National Chung Hsing University, Taiwan

    Google Scholar 

  134. Prashanthi Y, Garimella S, Kudle KR, Merugu R (2014) Effect of light intensity and metal ions on the production of hydrogen by the purple non sulphur bacterium Rhodospeudomonas palustris KU003. Int J Res Environ Sci Tech 4:61–64

    Google Scholar 

  135. Afşar N, Özgür E, Gürgan M, Vrije Td, Yücel M, Gündüz U et al (2006) Hydrogen production by R. Capsulatus on dark fermenter effluent of potato steam peel hydrolysate. Chem Eng Trans 18:385–90

    Google Scholar 

  136. Eroglu E, Melis A (2011) Photobiological hydrogen production: recent advances and state of the art. Bioresour Technol 102(18):8403–8413

    Article  Google Scholar 

  137. Kars G, Gündüz U, Yücel M, Türker L, Eroglu İ (2006) Hydrogen production and transcriptional analysis of nifD, nifK and hupS genes in Rhodobacter sphaeroides O.U.001 grown in media with different concentrations of molybdenum and iron. Int J Hydrog Energy 31(11):1536–1544

    Article  Google Scholar 

  138. Ludden PW, Roberts GP (1995) The biochemistry and genetics of nitrogen fixation by photosynthetic bacteria. In: Blankenship BE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  139. Zhu H, Fang HHP, Zhang T, Beaudette LA (2007) Effect of ferrous ion on photo heterotrophic hydrogen production by Rhodobacter sphaeroides. Int J Hydrog Energy 32(17):4112–4118

    Article  Google Scholar 

  140. Han H, Jia Q, Liu B, Yang H, Shen J (2013) Optimization of photosynthetic hydrogen production from acetate by Rhodobacter sphaeroides RV. Int J Hydrog Energy 38(29):12886–12890

    Article  Google Scholar 

  141. Rai PK, Singh SP, Asthana RK, Singh S (2014) Biohydrogen production from sugarcane bagasse by integrating dark- and photo-fermentation. Bioresour Technol 152(1):140–146

    Article  Google Scholar 

  142. Klasson KT, Lundbäck KMO, Clausen EC, Gaddy JL (1993) Kinetics of light limited growth and biological hydrogen production from carbon monoxide and water by Rhodospirillum rubrum. J Biotechnol 29(1–2):177–188

    Article  Google Scholar 

  143. Kim NJ, Lee JK, Lee CG (2004) Pigment reduction to improve photosynthetic productivity of Rhodobacter sphaeroides. J Microbiol Biotechnol 14(3):442–449

    Google Scholar 

  144. Zhang C, Zhu X, Liao Q, Wang Y, Li J, Ding Y et al (2010) Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria. Int J Hydrog Energy 35(11):5284–52923

    Article  Google Scholar 

  145. Kim MS, Baek JS (2006) JK. L. Comparison of H2 accumulation by Rhodobacter sphaeroides KD131 and its uptake hydrogenase and PHB synthase deficient mutant. Int J Hydrog Energy 31:121–127

    Article  Google Scholar 

  146. Hallenbeck PC, Liu Y (2016) Recent advances in hydrogen production by photosynthetic bacteria. Int J Hydrog Energy 41(7):4446–4454

    Article  Google Scholar 

  147. Krujatz F, Helbig K, Haufe N, Thierfelder S, Bley T, Weber J (2015) Hydrogen production by Rhodobacter sphaeroides DSM 158 under intense irradiation. Bioresour Technol 175:82–90

    Article  Google Scholar 

  148. Argun H, Kargi F (2010) Effects of light source, intensity and lighting regime on bio-hydrogen production from ground wheat starch by combined dark and photo-fermentations. Int J Hydrog Energy 35(4):1604–1612

    Article  Google Scholar 

  149. Tian X, Liao Q, Liu W, Wang Y, Zhu X, Li J et al (2009) Photo-hydrogen production rate of a PVA-boric acid gel granule containing immobilized photosynthetic bacteria cells. Int J Hydrog Energy 34(11):4708–4717

    Article  Google Scholar 

  150. Kawagoshi Y, Oki Y, Nakano I, Fujimoto A, Takahashi H (2010) Biohydrogen production by isolated halotolerant photosynthetic bacteria using long-wavelength light-emitting diode (LW-LED). Int J Hydrog Energy 35(24):13365–13369

    Article  Google Scholar 

  151. Stevens P, Vertonghen C, Vos PD, Ley JD (1984) The effect of temperature and light intensity on hydrogen gas production by different Rhodopseudomonas capsulata strains. Biotechnol Lett 6(5):277–282

    Article  Google Scholar 

  152. Cai J, Wang G (2014) Photo-biological hydrogen production by an acid tolerant mutant of Rhodovulum sulfidophilum P5 generated by transposon mutagenesis. Bioresource Technol 154:254–259

    Article  Google Scholar 

  153. Wang YZ, Liao Q, Zhu X, Tian X, Zhang C (2010) Characteristics of hydrogen production and substrate consumption of Rhodopseudomonas palustris CQK 01 in an immobilized-cell photobioreactor. Bioresour Technol 101(11):4034–4041

    Article  Google Scholar 

  154. Basak N, Jana AK, Das D (2014) Optimization of molecular hydrogen production by Rhodobacter sphaeroides O.U.001 in the annular photobioreactor using response surface methodology. Int J Hydrog Energy 39(23):11889–11901

    Article  Google Scholar 

  155. Sasikala CH, Ramana CHV, Rao PR (1995) Regulation of simultaneous hydrogen photoproduction during growth by pH and glutamate in Rhodobacter sphaeroides O.U. 001. Int J Hydrog Energy 20(2):123–126

    Article  Google Scholar 

  156. De Philippis R, Ena A, Guastini M, Sili C, Vincenzini M (1992) Factors affecting poly-β-hydroxybutyrate accumulation in cyanobacteria and in purple non-sulfur bacteria. FEMS Microbiol Lett 103(2–4):187–194

    Google Scholar 

  157. Melnicki MR, Bianchi L, Philippis RD, Melis A (2008) Hydrogen production during stationary phase in purple photosynthetic bacteria. Int J Hydrog Energy 33(22):6525–6534

    Article  Google Scholar 

  158. Ooshima H, Takakuwa S, Katsuda T, Okuda M, Shirasawa T, Azuma M et al (1998) Production of hydrogen by a hydrogenase-deficient mutant of Rhodobacter capsulatus. J Ferment Bioeng 85(5):470–475

    Article  Google Scholar 

  159. Han H, Jia Q, Liu B, Yang H, Shen J (2013) Fermentative hydrogen production from acetate using Rhodobacter sphaeroides RV. Int J Hydrog Energy 38(25):10773–10778

    Article  Google Scholar 

  160. Zhu H, Suzuki T, Tsygankov AA, Asada Y, Miyake J (1999) Hydrogen production from tofu wastewater by Rhodobacter sphaeroides immobilized in agar gels. Int J Hydrog Energy 24(4):305–310

    Article  Google Scholar 

  161. Zhu H, Ueda S, Asada Y, Miyake J (2002) Hydrogen production as a novel process of wastewater treatment—studies on tofu wastewater with entrapped R. sphaeroides and mutagenesis. Int J Hydrog Energy 27(11):1349–1357

    Article  Google Scholar 

  162. Anam K, Habibi MS, Harwati TU, Susilaningsih D (2012) Photofermentative hydrogen production using Rhodobium marinum from bagasse and soy sauce wastewater. Int J Hydrog Energy 37(20):15436–15442

    Article  Google Scholar 

  163. Jamil Z, Annuar MSM, Ibrahim S, Vikineswary S (2009) Optimization of phototrophic hydrogen production by Rhodopseudomonas palustris PBUM001 via statistical experimental design. Int J Hydrog Energy 34(17):7502–7512

    Article  Google Scholar 

  164. Budiman PM, Wu TY (2016) Ultrasonication pre-treatment of combined effluents from palm oil, pulp and paper mills for improving photofermentative biohydrogen production. Energy Convers Manage 119:142–150

    Article  Google Scholar 

  165. Ghosh D, Sobro IF, Hallenbeck PC (2012) Stoichiometric conversion of biodiesel derived crude glycerol to hydrogen: response surface methodology study of the effects of light intensity and crude glycerol and glutamate concentration. Bioresour Technol 106(106):154–160

    Article  Google Scholar 

  166. Eroğlu İ, Tabanoğlu A, Gündüz U, Eroğlu E, Yücel M (2008) Hydrogen production by Rhodobacter sphaeroides O.U.001 in a flat plate solar bioreactor. Int J Hydrog Energy 33(2):531–541

    Article  Google Scholar 

  167. Kars G, Alparslan Ü (2013) Valorization of sugar beet molasses for the production of biohydrogen and 5-aminolevulinic acid by Rhodobacter sphaeroides O.U.001 in a biorefinery concept. Int J Hydrog Energy 38(34):14488–14494

    Article  Google Scholar 

  168. Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: A path to economic viability for the biofuels industry. Curr Opin Biotech 18(3):213–219

    Article  Google Scholar 

  169. Reungsang A, Sittijunda S, Angelidaki I (2013) Simultaneous production of hydrogen and ethanol from waste glycerol by Enterobacter aerogenes KKU-S1. Int J Hydrog Energy 38(4):1813–1825

    Article  Google Scholar 

  170. Yang F, Hanna MA, Sun R (2012) Value-added uses for crude glycerol–a byproduct of biodiesel production. Biotechnol Biofuels 5(13):1–10

    Google Scholar 

  171. Sabourin-Provost G, Hallenbeck PC (2009) High yield conversion of a crude glycerol fraction from biodiesel production to hydrogen by photofermentation. Bioresour Technol 100(14):3513–3517

    Article  Google Scholar 

  172. Eroğlu E, Eroğlu İ, Gündüz U, Türker L, Yücel M (2006) Biological hydrogen production from olive mill wastewater with two-stage processes. Int J Hydrog Energy 31(11):1527–1535

    Article  Google Scholar 

  173. Eroğlu E, Eroğlu İ, Gündüz U, Yücel M (2009) Comparison of physicochemical characteristics and photofermentative hydrogen production potential of wastewaters produced from different olive oil mills in Western-Anatolia. Turkey. Biomass Bioenerg 33(4):706–711

    Article  Google Scholar 

  174. Ghosh S, Dairkee UK, Chowdhury R (2017) P. B. Hydrogen from food processing wastes via photofermentation using purple non-sulfur bacteria (PNSB)-A review. Energy Convers Manage 141:299–314

    Article  Google Scholar 

  175. Sweet WJ, Burris RH (1981) Inhibition of nitrogenase activity by NH4+ in Rhodospirillum rubrum. J Bacteriol 145(2):824–831

    Google Scholar 

  176. Jiang D, Zhuang D, Fu J, Huang Y, Wen K (2012) Bioenergy potential from crop residues in China: Availability and distribution. Renew Sustain Energy Rev 16(3):1377–1382

    Article  Google Scholar 

  177. Saratale GD, Chen SD, Lo YC, Saratale RG, Chang JS (2008) Outlook of biohydrogen production from lignocellulosic feedstock using dark fermentation—a review. J Sci Ind Res 67(11):962–979

    Google Scholar 

  178. Zhang ZP, Yue JZ, Zhou XH, Jing YY, Jiang DP, Zhang QG (2014) Photo-fermentative bio-hydrogen production from agricultural residue enzymatic hydrolyzate and the enzyme reuse. Bioresources 9(2):2299–2310

    Google Scholar 

  179. Pattra S, Sangyoka S, Boonmee M, Reungsang A (2008) Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. Int J Hydrog Energy 33(19):5256–5265

    Article  Google Scholar 

  180. Shibata M, Varman M, Tono Y, Miyafuji H, Saka S (2008) Characterization in chemical composition of the oil palm (Elaeis guineensis). J Jpn I Energy 87(34):2939–2942

    Google Scholar 

  181. Pattanamanee W, Choorit W, Deesan C, Sirisansaneeyakul S, Chisti Y (2012) Photofermentive production of biohydrogen from oil palm waste hydrolysate. Int J Hydrog Energy 37(5):4077–4087

    Article  Google Scholar 

  182. Sittijunda S (2015) Biogas production from hydrolysate napier grass by co-digestion with slaughterhouse wastewater using anaerobic mixed cultures. KKU Res J 20:323–336

    Google Scholar 

  183. Saxena RC, Adhikari DK, Goyal HB (2009) Biomass-based energy fuel through biochemical routes: A review. Renew Sustain Energy Rev 13(1):167–178

    Article  Google Scholar 

  184. Pattra S, Sittijunda S, Reungsang A (2017) Biohydrogen productions from hydrolysate of water hyacinth stem (Eichhornia crassipes) using anaerobic mixed cultures. Sains Malays 46(1):51–58

    Article  Google Scholar 

  185. Deng J, Xiong T, Wang H, Zheng A, Wang Y (2016) Effects of cellulose, hemicellulose, and lignin on the structure and morphology of porous carbons. ACS Sustain Chem Eng 4(7):3750–3756

    Article  Google Scholar 

  186. Sukjun J, Seunghyun K, Illmin C (2015) Comparison of lignin, cellulose, and hemicellulose contents for biofuels utilization among 4 types of lignocellulosic crops. Biomass Bioenerg 83:322–327

    Article  Google Scholar 

  187. Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112

    Article  Google Scholar 

  188. Khamtib S, Plangklang P, Reungsang A (2011) Optimization of fermentative hydrogen production from hydrolysate of microwave assisted sulfuric acid pretreated oil palm trunk by hot spring enriched culture. Int J Hydrog Energy 36(21):14204–14216

    Article  Google Scholar 

  189. Khamtib S, Reungsang A (2014) Co-digestion of oil palm trunk hydrolysate with slaughterhouse wastewater for thermophilic bio-hydrogen production by Thermoanaerobacterium thermosaccharolyticm KKU19. Int J Hydrog Energy 39(13):6872–6880

    Article  Google Scholar 

  190. Jiang D, Ge X, Zhang T, Liu H, Zhang Q (2016) Photo-fermentative hydrogen production from enzymatic hydrolysate of corn stalk pith with a photosynthetic consortium. Int J Hydrog Energy 41(38):16778–16785

    Article  Google Scholar 

  191. Lu C, Zhang Z, Zhou X, Hu J, Ge X, Xia C et al (2017) Effect of substrate concentration on hydrogen production by photo-fermentation in the pilot-scale baffled bioreactor. Bioresource Technol 247:1173–1176

    Article  Google Scholar 

  192. Kapdan IK, Kargi F, Oztekin R, Argun H (2009) Bio-hydrogen production from acid hydrolyzed wheat starch by photo-fermentation using different Rhodobacter sp. Int J Hydrog Energy 34(5):2201–2207

    Article  Google Scholar 

  193. Jiang D, Zhang Y, Lu C, Sun T, Zhang B, Zhang Q (2015) Dynamics of biomass straw enzymolysis and photosynthetic characteristics of biological hydrogen production. Trans Chin Soc Agri Mach 46(5):196–201

    Google Scholar 

  194. Sargsyan H, Gabrielyan L, Trchounian A (2016) The distillers grains with solubles as a perspective substrate for obtaining biomass and producing bio-hydrogen by Rhodobacter sphaeroides. Biomass Bioenerg 90:90–94

    Article  Google Scholar 

  195. Zhang Z, Wang Y, Hu J, Wu Q, Zhang Q (2015) Influence of mixing method and hydraulic retention time on hydrogen production through photo-fermentation with mixed strains. Int J Hydrog Energy 40(20):6521–6529

    Article  Google Scholar 

  196. Lu C, Zhang Z, Ge X, Wang Y, Zhou X, You X et al (2016) Bio-hydrogen production from apple waste by photosynthetic bacteria HAU-M1. Int J Hydrog Energy 41(31):13399–13407

    Article  Google Scholar 

  197. Liu H, Stephen Grot A (2005) † BEL. Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39(11):4317–4320

    Article  Google Scholar 

  198. Lin R, Cheng J, Yang Z, Ding L, Zhang J, Zhou J et al (2016) Enhanced energy recovery from cassava ethanol wastewater through sequential dark hydrogen, photo hydrogen and methane fermentation combined with ammonium removal. Bioresour Technol 214:686–691

    Article  Google Scholar 

  199. Fiβler J, Schirra C, Kohring G-W, Giffhorn F (1994) Hydrogen production from aromatic acids by Rhodopseudomonas palustris. Appl Microbiol Biotechnol 41(4):395–399

    Google Scholar 

  200. Foster AE, Forrester K, Gottlieb DJ, Barton GW, Romagnoli JA, Bradstock KF (2004) Large-scale expansion of cytomegalovirus-specific cytotoxic T cells in suspension culture. Biotechnol Bioeng 85(2):138–146

    Article  Google Scholar 

  201. zur Nieden NI, Cormier JT, Rancourt DE, Kallos MS (2007) Embryonic stem cells remain highly pluripotent following long term expansion as aggregates in suspension bioreactors. J Biotechnol 129(3):421–432

    Article  Google Scholar 

  202. Carmelo JG, Fernandesplatzgummer A, Cabral JM, Da SC (2014) Scalable ex vivo expansion of human mesenchymal stem/stromal cells in microcarrier-based stirred culture systems. Methods Mol Biol 1283:147–159

    Article  Google Scholar 

  203. Lee SY, Lee HJ, Park JM, Jin HL, Park JS, Shin HS et al (2010) Bacterial hydrogen production in recombinant Escherichia coli harboring a HupSL hydrogenase isolated from Rhodobacter sphaeroides under anaerobic dark culture. Int J Hydrog Energy 35(3):1112–1116

    Article  Google Scholar 

  204. Wu XD, Rongsheng R, Du ZY, Liu YH (2012) Current status and prospects of biodiesel production from microalgae. Energies 5(8):2667–2682

    Article  Google Scholar 

  205. Boran E, Özgür E, Yücel M, Gündüz U, Eroglu I (2012) Biohydrogen production by Rhodobacter capsulatus hup—mutant in pilot solar tubular photobioreactor. Int J Hydrog Energy 37(21):16437–16445

    Article  Google Scholar 

  206. Uyar B (2016) Bioreactor design for photofermentative hydrogen production. Bioprocess Biosyst Eng 39(9):1–10

    Article  Google Scholar 

  207. Zhong N, Liao Q, Zhu X, Zhao M (2015) Fiber-optic differential absorption sensor for accurately monitoring biomass in a photobioreactor. Appl Opt 54(2):228–235

    Article  Google Scholar 

  208. Markov SA, Weaver PF, Seibert M (1997) Spiral tubular bioreactors for hydrogen production by photosynthetic microorganisms. Humana Press

    Chapter  Google Scholar 

  209. Tawfik A, Elbery H, Kumari S, Bux F (2014) Use of mixed culture bacteria for photofermentive hydrogen of dark fermentation effluent. Bioresource Technol 168(3):119–126

    Article  Google Scholar 

  210. Scoma A, Giannelli L, Faraloni C, Torzillo G (2012) Outdoor H2 production in a 50-L tubular photobioreactor by means of a sulfur-deprived culture of the microalga Chlamydomonas reinhardtii. J Biotechnol 157(4):620–627

    Article  Google Scholar 

  211. Adessi A, Philippis RD (2014) Photobioreactor design and illumination systems for H2 production with anoxygenic photosynthetic bacteria: a review. Int J Hydrog Energy 39(7):3127–3141

    Article  Google Scholar 

  212. Singh RN, Sharma S (2012) Development of suitable photobioreactor for algae production—a review. Renew Sust Energy Rev 16(4):2347–2353

    Article  Google Scholar 

  213. Muller-Feuga A, Pruvost J, Guédes RL, Déan LL, Legentilhomme P, Legrand J (2003) Swirling flow implementation in a photobioreactor for batch and continuous cultures of porphyridium cruentum. Biotechnol Bioeng 84(5):544–551

    Article  Google Scholar 

  214. Krujatz F, Illing R, Krautwer T, Liao J, Helbig K, Goy K et al (2015) Light-field-characterization in a continuous hydrogen-producing photobioreactor by optical simulation and computational fluid dynamics. Biotechnol Bioeng 112(12):2439–2449

    Article  Google Scholar 

  215. Wang YZ, Liao Q, Zhu X, Chen R, Guo CL, Zhou J (2013) Bioconversion characteristics of Rhodopseudomonas palustris CQK 01 entrapped in a photobioreactor for hydrogen production. Bioresource Technol 135(2):331–338

    Article  Google Scholar 

  216. Sierra E, Acién FG, Fernández JM, García JL, González C, Molina E (2008) Characterization of a flat plate photobioreactor for the production of microalgae. Chem Eng J 138(1):136–147

    Article  Google Scholar 

  217. Gilbert JJ, Ray S, Das D (2011) Hydrogen production using Rhodobacter sphaeroides (O.U. 001) in a flat panel rocking photobioreactor. Int J Hydrog Energy 36(5):3434–3441

    Article  Google Scholar 

  218. Lehr F, Posten C (2009) Closed photo-bioreactors as tools for biofuel production. Curr Opin Biotech 20(3):280–285

    Article  Google Scholar 

  219. Miyake J, Miyake M, Asada Y (1999) Biotechnological hydrogen production “research for efficient light energy conversion”. Prog Ind Microbiol 35(1–3):89–101

    Article  Google Scholar 

  220. Hallenbeck PC, Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J Hydrog Energy 27(11):1185–1193

    Article  Google Scholar 

  221. Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technol 102(1):71–81

    Article  Google Scholar 

  222. Tanisho S, Ishiwata Y (1995) Continuous hydrogen production from molasses by fermentation using urethane foam as a support of flocks. Int J Hydrog Energy 20(7):541–545

    Article  Google Scholar 

  223. Otsuki T, Uchiyama S, Fujiki K, Fukunaga S (1998) Hydrogen production by a floating-type photobioreactor. Springer, US

    Google Scholar 

  224. Kondo T, Wakayama T, Miyake J (2006) Efficient hydrogen production using a multi-layered photobioreactor and a photosynthetic bacterium mutant with reduced pigment. Int J Hydrog Energy 31(11):1522–1526

    Article  Google Scholar 

  225. Qu XF, Wang YZ, Zhu X, Liao Q, Li J, Ding YD et al (2011) Bubble behavior and photo-hydrogen production performance of photosynthetic bacteria in microchannel photobioreactor. Int J Hydrog Energy 36(21):14111–14119

    Article  Google Scholar 

  226. Xie GJ, Liu BF, Ding J, Ren HY, Xing DF, Ren NQ (2011) Hydrogen production by photo-fermentative bacteria immobilized on fluidized bio-carrier. Int J Hydrogen Energ 36(21):13991–13996

    Article  Google Scholar 

  227. Zhong N, Liao Q, Zhu X, Chen R (2014) A fiber-optic sensor for accurately monitoring biofilm growth in a hydrogen production photobioreactor. Anal Chem 86(8):3994–4001

    Article  Google Scholar 

  228. Liao Q, Zhong NB, Zhu X, Chen R, Wang YZ, Lee DJ (2013) Enhancement of hydrogen production by adsorption of Rhodoseudomonas palustris CQK 01 on a new support material. Int J Hydrog Energy 38(35):15730–15737

    Article  Google Scholar 

  229. Lu L, Xing D, Ren N, Logan BE (2012) Syntrophic interactions drive the hydrogen production from glucose at low temperature in microbial electrolysis cells. Bioresource Technol 124(3):68–76

    Article  Google Scholar 

  230. Liao Q, Wang YJ, Wang YZ, Zhu X, Tian X, Li J (2010) Formation and hydrogen production of photosynthetic bacterial biofilm under various illumination conditions. Bioresource Technol 101(14):5315–5324

    Article  Google Scholar 

  231. Walker JT, Marsh PD (2004) A review of biofilms and their role in microbial contamination of dental unit water systems (DUWS). Int Biodeter Biodegr 54(3):87–98

    Article  Google Scholar 

  232. Carlén A, Nikdel K, Wennerberg A, Holmberg K, Olsson J (2001) Surface characteristics and in vitro biofilm formation on glass ionomer and composite resin. Biomaterials 22(5):481–487

    Article  Google Scholar 

  233. Whitehead KA, Verran J (2007) The effect of surface properties and application method on the retention of Pseudomonas aeruginosa on uncoated and titanium-coated stainless steel. Int Biodeter Biodegr 60(2):74–80

    Article  Google Scholar 

  234. Scheuerman TR, Camper AK, Hamilton MA (1998) Effects of substratum topography on bacterial adhesion. J Colloid Interface Sci 208(1):23–33

    Article  Google Scholar 

  235. Ginsburg MA, Karamanev D (2007) Experimental study of the immobilization of Acidithiobacillus ferrooxidans on carbon based supports. Biochem Eng J 36(3):294–300

    Article  Google Scholar 

  236. Diskin S, Cao Z, Leffler H, Panjwani N (2011) Performance of continuous hydrogen production in annular fiber-illuminating biofilm reactor. Ciesc J 62(11):3248–3255

    Google Scholar 

  237. Zhang C, Chen R, Wang Y, Wang Y, Zhang Q (2014) Effect of mass transfer on performance of substrate degradation within annular fiber-illuminating biofilm reactor for continuous hydrogen production. Energy Procedia 61:1455–1459

    Article  Google Scholar 

  238. Zhang C (2010) Characteristics of mass transfer and hydrogen production in biofilm photobioreactor with photosynthetic bacteria (In Chinese). Chongqing University, China

    Google Scholar 

  239. Guo CL, Zhu X, Liao Q, Wang YZ, Chen R, Lee DJ (2011) Enhancement of photo-hydrogen production in a biofilm photobioreactor using optical fiber with additional rough surface. Bioresource Technol 102(18):8507–8513

    Article  Google Scholar 

  240. Zhong N, Liao Q, Chen R, Zhu X, Wang Y (2013) GeO2-SiO2-chitosan-medium-coated hollow optical fiber for cell immobilization. Opt Lett 38(16):3115–3118

    Article  Google Scholar 

  241. Qiang L, Zhong NB, Xun Z, Rong C (2014) High-performance biofilm photobioreactor based on a GeO2 –SiO2 –chitosan-medium-coated hollow optical fiber. Int J Hydrog Energy 39(19):10016–10027

    Article  Google Scholar 

  242. Liao Q, Zhong N, Zhu X, Huang Y, Chen R (2015) Enhancement of hydrogen production by optimization of biofilm growth in a photobioreactor. Int J Hydrog Energy 40(14):4741–4751

    Article  Google Scholar 

  243. Jain A, Yang AHJ, Erickson D (2012) Gel-based optical waveguides with live cell encapsulation and integrated microfluidics. Opt Lett 37(9):1472–1474

    Article  Google Scholar 

  244. Zhang N (2013) A study on surface modification for enhancing hydrogen production of PSB biofilm and an on-line measurement system based on fiber-optic sensors (In Chinese). Chongqing University, China

    Google Scholar 

  245. Zhao QB, Yu HQ (2008) Fermentative H2 production in an upflow anaerobic sludge blanket reactor at various pH values. Bioresource Technol 99(5):1353–1358

    Article  Google Scholar 

  246. Mizuno O, Dinsdale R, Hawkes FR, Hawkes DL, Noike T (2000) Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresource Technol 73(1):59–65

    Article  Google Scholar 

  247. Liao Q, Liu DM, Ye DD, Zhu X, Lee DJ (2011) Mathematical modeling of two-phase flow and transport in an immobilized-cell photobioreactor. Int J Hydrog Energy 36(21):13939–13948

    Article  Google Scholar 

  248. Wu SY, Lin CJ (2003) Hydrogen production with immobilized sewage sludge in three-phase fluidized-bed bioreactors. Biotechnol Prog 19(3):828–832

    Article  Google Scholar 

  249. Ahn Y, Park EJ, Oh YK, Park S, Webster G, Weightman AJ (2005) Biofilm microbial community of a thermophilic trickling biofilter used for continuous biohydrogen production. FEMS Microbiol Lett 249(1):31–38

    Article  Google Scholar 

  250. Li Y, Zhong N, Liao Q, Fu Q, Huang Y, Zhu X et al (2017) A biomaterial doped with LaB6 nanoparticles as photothermal media for enhancing biofilm growth and hydrogen production in photosynthetic bacteria. Int J Hydrog Energy 42(9):5793–5803

    Article  Google Scholar 

  251. Banerjee I, Modak JM, Bandopadhyay K, Das D, Maiti BR (2001) Mathematical model for evaluation of mass transfer limitations in phenol biodegradation by immobilized Pseudomonas putida. J Biotechnol 87(3):211–223

    Article  Google Scholar 

  252. Das D, Badri PK, Kumar N, Bhattacharya P (2002) Simulation and modeling of continuous H2 production process by Enterobacter cloacae IIT-BT 08 using different bioreactor configuration. Enzyme Microb Technol 31(6):867–875

    Article  Google Scholar 

  253. Palazzi E, Perego P, Fabiano B (2002) Mathematical modelling and optimization of hydrogen continuous production in a fixed bed bioreactor. Chem Eng Sci 57(18):3819–3830

    Article  Google Scholar 

  254. Tepe O, Dursun AY (2008) Combined effects of external mass transfer and biodegradation rates on removal of phenol by immobilized Ralstonia eutropha in a packed bed reactor. J Hazard Mater 151(1):9–16

    Article  Google Scholar 

  255. Succi S (2001) The lattice Boltzmann equation—for fluid dynamics and beyond. Clarendon Press

    Google Scholar 

  256. Sukop MC, Thorne DTJ (2007) Lattice Boltzmann modeling: an introduction for geoscientists and engineers. Springer Publishing Company, Incorporated

    Google Scholar 

  257. Chen S, Doolen GD (2012) Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30(1):329–364

    Article  MathSciNet  Google Scholar 

  258. He X, Doolen G (1997) Lattice Boltzmann method on curvilinear coordinates system: Flow around a circular cylinder. J Comput Phys 134(2):306–315

    Article  MATH  Google Scholar 

  259. Hölzer A, Sommerfeld M (2009) Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles. Comput Fluids 38(3):572–589

    Article  Google Scholar 

  260. Zhao LG, Zhao TS (2005) A lattice Boltzmann model for convection heat transfer in porous media. Numer Heat Transf Part B 47(2):157–177

    Article  Google Scholar 

  261. Tian ZW, Zou C, Liu HJ, Guo ZL, Liu ZH, Zheng CG (2007) Lattice Boltzmann scheme for simulating thermal micro-flow. Phys A 385(1):59–68

    Article  Google Scholar 

  262. Verma N, Mewes D, Luke A (2010) Lattice Boltzmann study of velocity, temperature, and concentration in micro-reactors. Int J Heat Mass Transf 53(15):3175–3185

    Article  MATH  Google Scholar 

  263. Biferale L, Perlekar P, Sbragaglia M, Toschi F (2012) Convection in multiphase fluid flows using lattice Boltzmann methods. Phys Rev Lett 108(10):104502–104506

    Article  Google Scholar 

  264. Kim SH, Pitsch H, Boyd ID (2009) Lattice Boltzmann modeling of multicomponent diffusion in narrow channels. Phys Rev E 79(1):6702–6712

    Article  Google Scholar 

  265. Onishi J, Chen Y, Ohashi H (2006) Dynamic simulation of multi-component viscoelastic fluids using the lattice Boltzmann method. Phys A 362(1):84–92

    Article  Google Scholar 

  266. Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 45(4):855–863

    Article  MATH  Google Scholar 

  267. Wang X, Chen B, Wu J (2007) A semianalytical solution of periodical electro-osmosis in a rectangular microchannel. Phys Fluids 19(12):127101–127109

    Article  MATH  Google Scholar 

  268. Gao Y, Zhang X, Rama P, Liu Y, Chen R, Ostadi H et al (2012) Calculating the anisotropic permeability of porous media using the lattice Boltzmann method and X-ray computed tomography. TranspPorous Med 92(2):457–472

    Google Scholar 

  269. Verma N, Mewes D (2009) Lattice Boltzmann methods for simulation of micro and macrotransport in a packed bed of porous adsorbents under non-isothermal condition. Comput Math Appl 58(5):1003–1014

    Article  MathSciNet  MATH  Google Scholar 

  270. Yamamoto K, Takada N, Misawa M (2005) Combustion simulation with lattice Boltzmann method in a three-dimensional porous structure. P Combust Inst 30(1):1509–1515

    Article  Google Scholar 

  271. Sullivan SP, Gladden LF, Johns ML (2006) 3D chemical reactor LB simulations. Math Comput Simul 72(2–6):206–211

    Article  MathSciNet  MATH  Google Scholar 

  272. Yu H, Luo LS, Girimaji S (2012) Scalar mixing and chemical reaction simulations using lattice Boltzmann method. Int J Comput Eng Sci 3(1):73–88

    Article  Google Scholar 

  273. Flekkøy EG (1993) Lattice Bhatnagar-Gross-Krook models for miscible fluids. Phys Rev E 47(6):4247–4257

    Article  Google Scholar 

  274. Qian YH, D’Humires D, Lallemand P (2007) Lattice BGK Models for Navier-Stokes equation. Europhys Lett 17(6):479–484

    Article  MATH  Google Scholar 

  275. Sullivan SP, Sani FM, Johns ML, Gladden LF (2005) Simulation of packed bed reactors using lattice Boltzmann methods. Chem Eng Sci 60(12):3405–3418

    Article  Google Scholar 

  276. Yang Y (2013) Lattice Boltzmann simulation of flow and mass transfer in porous media with photo bioreaction (In Chinese). Chonqqing University, China

    Google Scholar 

  277. He X, Luo LS (1997) A priori derivation of the lattice Boltzmann equation. Phys Rev E 55(6):6333–6336

    Article  Google Scholar 

  278. He X, Luo LS (1997) Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. Phys Rev E 56(6):6811–6817

    Article  Google Scholar 

  279. Guo Z, Shi B, Wang N (2000) Lattice BGK model for incompressible Navier-Stokes equation. Academic Press Professional, Inc.

    Article  MathSciNet  MATH  Google Scholar 

  280. Lin CN, Wu SY, Chang JS (2006) Fermentative hydrogen production with a draft tube fluidized bed reactor containing silicone-gel-immobilized anaerobic sludge. Int J Hydrog Energy 31(15):2200–2210

    Article  Google Scholar 

  281. Zhang ZP, Show KY, Tay JH, Liang DT, Lee DJ (2008) Biohydrogen production with anaerobic fluidized bed reactors—a comparison of biofilm-based and granule-based systems. Int J Hydrog Energy 33(5):1559–1564

    Article  Google Scholar 

  282. Liao Q, Yang YX, Zhu X, Chen R, Fu Q (2017) A simulation on flow and mass transfer in a packed bed photobioreactor for hydrogen production. Int J Heat Mass Tran 109:1132–1142

    Article  Google Scholar 

  283. Guo Z, Zheng C, Shi B (2002) An extrapolation method for boundary conditions in lattice Boltzmann method. Phys Fluids 14(6):2007–2010

    Article  MATH  Google Scholar 

  284. Guo Z, Zhao TS (2002) Lattice Boltzmann model for incompressible flows through porous media. Phys Rev E 66(3):6304–6314

    Article  Google Scholar 

  285. Liao Q, Yang YX, Zhu X, Chen R (2013) Lattice Boltzmann simulation of substrate solution through aporous granule immobilized PSB-cell for biohydrogen production. Int J Hydrog Energy 38(35):15700–15709

    Article  Google Scholar 

  286. Yu D, Mei R, Wei S (2010) A multi-block lattice Boltzmann method for viscous fluid flows. Int J Numer Meth Fl 39(2):99–120

    Article  MATH  Google Scholar 

  287. Wang M, Wang J, Pan N, Chen S (2007) Mesoscopic predictions of the effective thermal conductivity for microscale random porous media. Phys Rev E 75(3):6702–6712

    Google Scholar 

  288. Liao Q, Yang Y, Zhu X, Chen R, Fu Q (2017) Pore-scale lattice Boltzmann simulation of flow and mass transfer in bioreactor with an immobilized granule for biohydrogen production. Chin Sci Bull 62(1):22–30

    Google Scholar 

  289. Yu D, Girimaji SS (2006) Multi-block Lattice Boltzmann method: Extension to 3D and validation in turbulence. Phys A 362(1):118–124

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the International Cooperation and Exchange of the National Natural Science Foundation of China (No. 51561145013) and TRF Senior Research Scholar (No. RTA5980004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reungsang, A., Zhong, N., Yang, Y., Sittijunda, S., Xia, A., Liao, Q. (2018). Hydrogen from Photo Fermentation. In: Liao, Q., Chang, Js., Herrmann, C., Xia, A. (eds) Bioreactors for Microbial Biomass and Energy Conversion. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7677-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7677-0_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7676-3

  • Online ISBN: 978-981-10-7677-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics