Skip to main content

Photoautotrophic Microalgal Cultivation and Conversion

  • Chapter
  • First Online:
Book cover Bioreactors for Microbial Biomass and Energy Conversion

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

As the largest photoautotrophic microorganisms communities, microalgae are important materials for biological carbon dioxide fixation through photosynthesis and biodiesel production due to their fast growth rate, significant carbon dioxide capture capacity, high lipid content, etc. They are also regarded as the promising feedstocks for the third-generation biofuels. For the cultivation of microalgae, photobioreactors (PBRs) are necessary apparatuses that provide appropriate growth conditions for the proliferation of microalgal cells. Nevertheless, the design of an efficient PBR is associated with many thermodynamic challenges, such as light, CO2, and inorganic nutrients transfer in microalgal culture, all of which have a significant impact on the performance of the PBR. Up to now, various attempts have been devoted to optimize the light distribution , CO2, and nutrients transfer within microalgal cultures that employ light-guiding materials , hollow fiber membranes , anion exchange membranes, etc. In this chapter, we provided an overview and generated a comprehensive comparison on PBR performance enhancement methods from the perspectives of light and mass transfer , as well as potential approaches for the concentrating and conversion of photoautotrophic microalgal cells to biofuels .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sambusiti C, Bellucci M, Zabaniotou A, Beneduce L, Monlau F (2015) Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: a comprehensive review. Renew Sustain Energy Rev 44:20–36

    Article  Google Scholar 

  2. Uggetti E, Sialve B, Trably E, Steyer JP (2014) Integrating microalgae production with anaerobic digestion: a biorefinery approach. Biofuels Bioprod Biorefin 8(4):516–529

    Article  Google Scholar 

  3. Chisti Y (2013) Constraints to commercialization of algal fuels. J Biotechnol 167(3):201–214

    Article  Google Scholar 

  4. Zhang L, Xu CC, Champagne P (2010) Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers Manag 51(5):969–982

    Article  Google Scholar 

  5. Lam MK, Lee KT, Mohamed AR (2012) Current status and challenges on microalgae-based carbon capture. Int J Greenh Gas Control 10:456–469

    Article  Google Scholar 

  6. Huang G, Chen F, Wei D, Zhang X, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87(1):38–46

    Article  Google Scholar 

  7. Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102(1):71–81

    Article  Google Scholar 

  8. Yoo C, Jun SY, Lee JY, Ahn CY, Oh HM (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol 101(1):S71–S74

    Article  Google Scholar 

  9. Peers G, Truong TB, Ostendorf E, Busch A, Elrad D, Grossman AR et al (2009) An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462(7272):518–521

    Article  Google Scholar 

  10. Wahidin S, Idris A, Shaleh SRM (2013) The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresour Technol 129:7–11

    Article  Google Scholar 

  11. Kim TH, Lee Y, Han SH, Hwang SJ (2013) The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment. Bioresour Technol 130:75–80

    Article  Google Scholar 

  12. Cardol P, Forti G, Finazzi G (2011) Regulation of electron transport in microalgae. Biochim Biophys Acta (BBA)-Bioenerg 1807(8):912–918

    Article  Google Scholar 

  13. Wobbe L, Bassi R, Kruse O (2016) Multi-level light capture control in plants and green algae. Trends Plant Sci 21(1):55–68

    Article  Google Scholar 

  14. Ho SH, Chen CY, Lee DJ, Chang JS (2011) Perspectives on microalgal CO2-emission mitigation systems—a review. Biotechnol Adv 29(2):189–198

    Article  Google Scholar 

  15. Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22(6):1490–1506

    Article  Google Scholar 

  16. Mattos ER, Singh M, Cabrera ML, Das KC (2012) Effects of inoculum physiological stage on the growth characteristics of Chlorella sorokiniana cultivated under different CO2 concentrations. Appl Biochem Biotech 168(3):519–530

    Article  Google Scholar 

  17. Shene C, Chisti Y, Bustamante M, Rubilar M (2016) Effect of CO2 in the aeration gas on cultivation of the microalga Nannochloropsis oculata: experimental study and mathematical modeling of CO2 assimilation. Algal Res 13:16–29

    Article  Google Scholar 

  18. Juneja A, Ceballos RM, Murthy GS (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6(9):4607–4638

    Article  Google Scholar 

  19. Peccia J, Haznedaroglu B, Gutierrez J, Zimmerman JB (2013) Nitrogen supply is an important driver of sustainable microalgae biofuel production. Trends Biotechnol 31(3):134–138

    Article  Google Scholar 

  20. Xu Z, Zou D, Gao K (2010) Effects of elevated CO2 and phosphorus supply on growth, photosynthesis and nutrient uptake in the marine macroalga Gracilaria lemaneiformis (Rhodophyta). Bot Mar 53(2):123–129

    Google Scholar 

  21. Li X, Hu HY, Gan K, Sun YX (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101(14):5494–5500

    Article  Google Scholar 

  22. Van Wagenen J, Miller TW, Hobbs S, Hook P, Crowe B, Huesemann M (2012) Effects of light and temperature on fatty acid production in Nannochloropsis salina. Energies 5(3):731–740

    Article  Google Scholar 

  23. Béchet Q, Shilton A, Guieysse B (2013) Modeling the effects of light and temperature on algae growth: state of the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnol Adv 31(8):1648–1663

    Article  Google Scholar 

  24. Guedes A, Amaro HM, Pereira RD, Malcata FX (2011) Effects of temperature and pH on growth and antioxidant content of the microalga Scenedesmus obliquus. Biotechnol Prog 27(5):1218–1224

    Article  Google Scholar 

  25. Ugwu C, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99(10):4021–4028

    Article  Google Scholar 

  26. Olivieri G, Salatino P, Marzocchella A (2014) Advances in photobioreactors for intensive microalgal production: configurations, operating strategies and applications. J Chem Technol Biotechnol 89(2):178–195

    Article  Google Scholar 

  27. Kim ZH, Kim SH, Lee HS, Lee CG (2006) Enhanced production of astaxanthin by flashing light using Haematococcus pluvialis. Enzyme Microb Technol 39(3):414–419

    Article  Google Scholar 

  28. Wang SK, Stiles AR, Guo C, Liu CZ (2014) Microalgae cultivation in photobioreactors: an overview of light characteristics. Eng Life Sci 14(6):550–559

    Article  Google Scholar 

  29. Lee KH, Kim BW (1998) Enhanced microbial removal of H2S using Chlorobium in an optical-fiber bioreactor. Biotechnol Lett 20(5):525–529

    Article  Google Scholar 

  30. Xue S, Zhang Q, Wu X, Yan C, Cong W (2013) A novel photobioreactor structure using optical fibers as inner light source to fulfill flashing light effects of microalgae. Bioresour Technol 138:141–147

    Article  Google Scholar 

  31. Hsieh CH, Wu WT (2009) A novel photobioreactor with transparent rectangular chambers for cultivation of microalgae. Biochem Eng J 46(3):300–305

    Article  Google Scholar 

  32. Sun YH, Huang Y, Liao Q, Fu Q, Zhu X (2016) Enhancement of microalgae production by embedding hollow light guides to a flat-plate photobioreactor. Bioresour Technol 207:31–38

    Article  Google Scholar 

  33. Jung EE, Jain A, Voulis N, Doud DF, Angenent LT, Erickson D (2014) Stacked optical waveguide photobioreactor for high density algal cultures. Bioresour Technol 171:495–499

    Article  Google Scholar 

  34. Sun YH, Liao Q, Huang Y, Xia A, Fu Q, Zhu X, Zheng YP (2016) Integrating planar waveguides doped with light scattering nanoparticles into a flat-plate photobioreactor to improve light distribution and microalgae growth. Bioresour Technol 220:215–224

    Article  Google Scholar 

  35. Jain A, Voulis N, Jung EE, Doud DF, Miller WB, Angenent LT, Erickson D (2015) Optimal intensity and biomass density for biofuel production in a thin-light-path photobioreactor. Environ Sci Technol 49(10):6327–6334

    Article  Google Scholar 

  36. Ahsan SS, Pereyra B, Jung EE, Erickson D (2014) Engineered surface scatterers in edge-lit slab waveguides to improve light delivery in algae cultivation. Opt Express 22(106):A1526–A1537

    Article  Google Scholar 

  37. Genin SN, Aitchison JS, Allen DG (2015) Novel waveguide reactor design for enhancing algal biofilm growth. Algal Res 12:529–538

    Article  Google Scholar 

  38. Liao Q, Sun YH, Huang Y, Xia A, Fu Q, Zhu X (2017) Simultaneous enhancement of Chlorella vulgaris growth and lipid accumulation through the synergy effect between light and nitrate in a planar waveguide flat-plate photobioreactor. Bioresour Technol 243:528–538

    Article  Google Scholar 

  39. Sun YH, Huang Y, Liao Q, Xia A, Fu Q, Zhu X, Fu JW (2018) Boosting Nannochloropsis oculata growth and lipid accumulation in a lab-scale open raceway pond characterized by improved light distributions employing built-in planar waveguide modules. Bioresour Technol 249:880–889

    Article  Google Scholar 

  40. Qiang H, Richmond A (1996) Productivity and photosynthetic efficiency of Spirulina platensis as affected by light intensity, algal density and rate of mixing in a flat plate photobioreactor. J Appl Phycol 8(2):139–145

    Article  Google Scholar 

  41. Oncel S, Sabankay M (2012) Microalgal biohydrogen production considering light energy and mixing time as the two key features for scale-up. Bioresour Technol 121:228–234

    Article  Google Scholar 

  42. Degen J, Uebele A, Retze A, Schmid-Staiger U, Trösch W (2001) A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. J Biotechnol 92(2):89–94

    Article  Google Scholar 

  43. Wang LL, Tao Y, Mao XZ (2014) A novel flat plate algal bioreactor with horizontal baffles: Structural optimization and cultivation performance. Bioresour Technol 164:20–27

    Article  Google Scholar 

  44. Huang JK, Li YG, Wan MX, Yan Y, Feng F, Qu XX, Wang J, Shen GM, Li W, Fan JH, Wang WL (2014) Novel flat-plate photobioreactors for microalgae cultivation with special mixers to promote mixing along the light gradient. Bioresour Technol 159:8–16

    Article  Google Scholar 

  45. Yang Z, Cheng J, Xu X, Zhou J, Cen K (2016) Enhanced solution velocity between dark and light areas with horizontal tubes and triangular prism baffles to improve microalgal growth in a flat-panel photo-bioreactor. Bioresour Technol 211:519–526

    Article  Google Scholar 

  46. Cheng J, Yang Z, Ye Q, Zhou J, Cen K (2015) Enhanced flashing light effect with up-down chute baffles to improve microalgal growth in a raceway pond. Bioresour Technol 190:29–35

    Article  Google Scholar 

  47. Zhang Q, Xue S, Yan C, Wu X, Wen S, Cong W (2015) Installation of flow deflectors and wing baffles to reduce dead zone and enhance flashing light effect in an open raceway pond. Bioresour Technol 198:150–156

    Article  Google Scholar 

  48. Huang JK, Qu XX, Wan MX, Ying JG, Li YG, Zhu FC, Wang J, Shen GM, Chen JP, Li W (2015) Investigation on the performance of raceway ponds with internal structures by the means of CFD simulations and experiments. Algal Res 10:64–71

    Article  Google Scholar 

  49. Huang Y, Sun YH, Liao Q, Fu Q, Xia A, Zhu X (2016) Improvement on light penetrability and microalgae biomass production by periodically pre-harvesting Chlorella vulgaris cells with culture medium recycling. Bioresour Technol 216:669–676

    Article  Google Scholar 

  50. Fernández FA, Sevilla JF, Grima EM (2013) Photobioreactors for the production of microalgae. Rev Environ Sci Biotechnol 12(2):131–151

    Article  Google Scholar 

  51. Cheng L, Zhang L, Chen H, Gao C (2006) Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Sep Purif Technol 50(3):324–329

    Article  Google Scholar 

  52. Fan LH, Zhang YT, Zhang L, Chen HL (2008) Evaluation of a membrane-sparged helical tubular photobioreactor for carbon dioxide biofixation by Chlorella vulgaris. J Membr Sci 325(1):336–345

    Article  Google Scholar 

  53. Kim HW, Cheng J, Rittmann BE (2016) Direct membrane-carbonation photobioreactor producing photoautotrophic biomass via carbon dioxide transfer and nutrient removal. Bioresour Technol 204:32–37

    Article  Google Scholar 

  54. Zheng Q, Martin GJ, Kentish SE (2016) Energy efficient transfer of carbon dioxide from flue gases to microalgal systems. Energy Environ Sci 9(3):1074–1082

    Article  Google Scholar 

  55. Ketheesan B, Nirmalakhandan N (2012) Feasibility of microalgal cultivation in a pilot-scale airlift-driven raceway reactor. Bioresour Technol 108:196–202

    Article  Google Scholar 

  56. Li S, Luo S, Guo R (2013) Efficiency of CO2 fixation by microalgae in a closed raceway pond. Bioresour Technol 136:267–272

    Article  Google Scholar 

  57. Yang Z, Cheng J, Lin R, Zhou J, Cen K (2016) Improving microalgal growth with reduced diameters of aeration bubbles and enhanced mass transfer of solution in an oscillating flow field. Bioresour Technol 211:429–434

    Article  Google Scholar 

  58. Yang Z, Cheng J, Liu J, Zhou J, Cen K (2016) Improving microalgal growth with small bubbles in a raceway pond with swing gas aerators. Bioresour Technol 216:267–272

    Article  Google Scholar 

  59. Huang Y, Zhao S, Ding YD, Liao Q, Huang Y, Zhu X (2017) Optimizing the gas distributor based on CO2 bubble dynamic behaviors to improve microalgal biomass production in an air-lift photo-bioreactor. Bioresour Technol 233:84–91

    Article  Google Scholar 

  60. Beuckels A, Smolders E, Muylaert K (2015) Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water Res 77:98–106

    Article  Google Scholar 

  61. Fu Q, Chang HX, Huang Y, Liao Q, Zhu X, Xia A, Sun YH (2016) A novel self-adaptive microalgae photobioreactor using anion exchange membranes for continuous supply of nutrients. Bioresour Technol 214:629–636

    Article  Google Scholar 

  62. Chang HX, Fu Q, Huang Y, Xia A, Liao Q, Zhu X, Zheng YP, Sun CH (2016) An annular photobioreactor with ion-exchange-membrane for non-touch microalgae cultivation with wastewater. Bioresour Technol 219:668–676

    Article  Google Scholar 

  63. Wang JF, Liu W, Liu TZ (2017) Biofilm based attached cultivation technology for microalgal biorefineries—a review. Bioresour Technol 244(2):1245–1253

    Article  Google Scholar 

  64. Huang Y, Xiong W, Liao Q, Fu Q, Xia A, Zhu X, Sun YH (2016) Comparison of Chlorella vulgaris biomass productivity cultivated in biofilm and suspension from the aspect of light transmission and microalgae affinity to carbon dioxide. Bioresour Technol 222:367–373

    Article  Google Scholar 

  65. Ozkan A, Kinney K, Katz L, Berberoglu H (2012) Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresour Technol 114:542–548

    Article  Google Scholar 

  66. Liu TZ, Wang JF, Hu Q, Cheng PF, Ji B, Liu JL, Chen Y, Zhang W, Chen XL, Chen L, Gao LL, Ji CL, Wang H (2013) Attached cultivation technology of microalgae for efficient biomass feedstock production. Bioresour Technol 127:216–222

    Article  Google Scholar 

  67. Zhang LL, Chen L, Wang JF, Chen Y, Gao X, Zhang ZH, Liu TZ (2015) Attached cultivation for improving the biomass productivity of Spirulina platensis. Bioresour Technol 181:136–142

    Article  Google Scholar 

  68. Shi J, Podola B, Melkonian M (2014) Application of a prototype-scale Twin-Layer photobioreactor for effective N and P removal from different process stages of municipal wastewater by immobilized microalgae. Bioresour Technol 154:260–266

    Article  Google Scholar 

  69. Zhuang LL, Hu HY, Wu YH, Wang T, Zhang TY (2014) A novel suspended-solid phase photobioreactor to improve biomass production and separation of microalgae. Bioresour Technol 153:399–402

    Article  Google Scholar 

  70. Gao F, Yang ZH, Li C, Zeng GM, Ma DH, Zhou L (2015) A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent. Bioresour Technol 179:8–12

    Article  Google Scholar 

  71. Gross M, Henry W, Michael C, Wen Z (2013) Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest. Bioresour Technol 150:195–201

    Article  Google Scholar 

  72. Blanken W, Janssen M, Cuaresma M, Libor Z, Bhaiji T, Wijffels R (2014) Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor. Biotechnol Bioeng 111(12):2436–2445

    Article  Google Scholar 

  73. Barros AI, Gonçalves AL, Simões M, Pires JC (2015) Harvesting techniques applied to microalgae: a review. Renew Sustain Energy Rev 41:1489–1500

    Article  Google Scholar 

  74. Henderson R, Parsons SA, Jefferson B (2008) The impact of algal properties and pre-oxidation on solid-liquid separation of algae. Water Res 42(8):1827–1845

    Article  Google Scholar 

  75. Wang SK, Stiles AR, Guo C, Liu CZ (2015) Harvesting microalgae by magnetic separation: a review. Algal Res 9:178–185

    Article  Google Scholar 

  76. Ozkan A, Berberoglu H (2013) Physico-chemical surface properties of microalgae. Colloid Surfaces B 112:287–293

    Article  Google Scholar 

  77. Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29(6):686–702

    Article  Google Scholar 

  78. Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88(10):3411–3424

    Article  Google Scholar 

  79. Rubio J, Souza M, Smith R (2002) Overview of flotation as a wastewater treatment technique. Miner Eng 15(3):139–155

    Article  Google Scholar 

  80. Farooq W, Moon M, Ryu BG, Suh WI, Shrivastav A, Park MS, Mishra SK, Yang JW (2015) Effect of harvesting methods on the reusability of water for cultivation of Chlorella vulgaris, its lipid productivity and biodiesel quality. Algal Res 8:1–7

    Article  Google Scholar 

  81. Papazi A, Makridis P, Divanach P (2010) Harvesting Chlorella minutissima using cell coagulants. J Appl Phycol 22(3):349–355

    Article  Google Scholar 

  82. Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energy 2(1):012701

    Article  Google Scholar 

  83. Bilad M, Arafat HA, Vankelecom IF (2014) Membrane technology in microalgae cultivation and harvesting: a review. Biotechnol Adv 32(7):1283–1300

    Article  Google Scholar 

  84. Ndikubwimana T, Chang J, Xiao Z, Shao W, Zeng X, Ng IS, Lu YH (2016) Flotation: a promising microalgae harvesting and dewatering technology for biofuels production. Biotechnol J 11(3):315–326

    Article  Google Scholar 

  85. Danquah MK, Gladman B, Moheimani N, Forde GM (2009) Microalgal growth characteristics and subsequent influence on dewatering efficiency. Chem Eng J 151(1):73–78

    Article  Google Scholar 

  86. Pragya N, Pandey KK, Sahoo P (2013) A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renew Sustain Energy Rev 24:159–171

    Article  Google Scholar 

  87. Schlesinger A, Eisenstadt D, Bar GA, Carmely H, Einbinder S, Gressel J (2012) Inexpensive non-toxic flocculation of microalgae contradicts theories; overcoming a major hurdle to bulk algal production. Biotechnol Adv 30(5):1023–1030

    Article  Google Scholar 

  88. Becker E (2007) Micro-algae as a source of protein. Biotechnol Adv 25(2):207–210

    Article  MathSciNet  Google Scholar 

  89. Ryckebosch E, Bruneel C, Termote VR, Goiris K, Muylaert K, Foubert I (2014) Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chem 160:393–400

    Article  Google Scholar 

  90. Quinn JC, Davis R (2015) The potentials and challenges of algae based biofuels: a review of the techno-economic, life cycle, and resource assessment modeling. Bioresour Technol 184:444–452

    Article  Google Scholar 

  91. Sun A, Davis R, Starbuck M, Ben-Amotz A, Pate R, Pienkos PT (2011) Comparative cost analysis of algal oil production for biofuels. Energy 36(8):5169–5179

    Article  Google Scholar 

  92. Hernández D, Solana M, Riaño B, García GM, Bertucco A (2014) Biofuels from microalgae: lipid extraction and methane production from the residual biomass in a biorefinery approach. Bioresour Technol 170:370–378

    Article  Google Scholar 

  93. de Souza Silva APF, Costa MC, Lopes AC, Neto EFA, Leitão RC, Mota CR, dos Santos AB (2014) Comparison of pretreatment methods for total lipids extraction from mixed microalgae. Renew Energy 63:762–766

    Article  Google Scholar 

  94. Taher H, Al ZS, Al MAH, Haik Y, Farid M (2014) Effective extraction of microalgae lipids from wet biomass for biodiesel production. Biomass Bioenergy 66:159–167

    Article  Google Scholar 

  95. Cooney M, Young G, Nagle N (2009) Extraction of bio-oils from microalgae. Sep Purif Rev 38(4):291–325

    Article  Google Scholar 

  96. Lardon L, Helias A, Sialve B, Steyer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. ACS Publications

    Article  Google Scholar 

  97. Sheehan JD, Savage PE (2017) Modeling the effects of microalga biochemical content on the kinetics and biocrude yields from hydrothermal liquefaction. Bioresour Technol 239:144–150

    Article  Google Scholar 

  98. Barreiro DL, Prins W, Ronsse F, Brilman W (2013) Hydrothermal liquefaction (HTL) of microalgae for biofuel production: state of the art review and future prospects. Biomass Bioenergy 53:113–127

    Article  Google Scholar 

  99. Biller P, Ross AB, Skill S, Lea-Langton A, Balasundaram B, Hall C, Riley R, Llewellyn CA (2012) Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process. Algal Res 1(1):70–76

    Article  Google Scholar 

  100. Garcia AL, Torri C, Samorì C, van der Spek J, Fabbri D, Kersten SR, Brilman DWF (2011) Hydrothermal treatment (HTT) of microalgae: evaluation of the process as conversion method in an algae biorefinery concept. Energy Fuel 26(1):642–657

    Article  Google Scholar 

  101. Laurens L, Nagle N, Davis R, Sweeney N, Van WS, Lowell A, Pienkos PT (2015) Acid-catalyzed algal biomass pretreatment for integrated lipid and carbohydrate-based biofuels production. Green Chem 17(2):1145–1158

    Article  Google Scholar 

  102. Dong T, Van WS, Nagle N, Pienkos PT, Laurens LM (2016) Impact of biochemical composition on susceptibility of algal biomass to acid-catalyzed pretreatment for sugar and lipid recovery. Algal Res 18:69–77

    Article  Google Scholar 

  103. Van BM (2001) Kinetic aspects of the Maillard reaction: a critical review. Mol Nutr Food Res 45(3):150–159

    Google Scholar 

  104. Martin GJ (2016) Energy requirements for wet solvent extraction of lipids from microalgal biomass. Bioresour Technol 205:40–47

    Article  Google Scholar 

  105. Yap BH, Crawford SA, Dumsday GJ, Scales PJ, Martin GJ (2014) A mechanistic study of algal cell disruption and its effect on lipid recovery by solvent extraction. Algal Res 5:112–120

    Article  Google Scholar 

  106. Johnson LA, Lusas E (1983) Comparison of alternative solvents for oils extraction. J Am Oil Chem Soc 60(2):229–242

    Article  Google Scholar 

  107. Olmstead IL, Kentish SE, Scales PJ, Martin GJ (2013) Low solvent, low temperature method for extracting biodiesel lipids from concentrated microalgal biomass. Bioresour Technol 148:615–619

    Article  Google Scholar 

  108. Halim R, Webley PA, Martin GJ (2016) The CIDES process: fractionation of concentrated microalgal paste for co-production of biofuel, nutraceuticals, and high-grade protein feed. Algal Res 19:299–306

    Article  Google Scholar 

  109. Du Y, Schuur B, Samorì C, Tagliavini E, Brilman DWF (2013) Secondary amines as switchable solvents for lipid extraction from non-broken microalgae. Bioresour Technol 149:253–260

    Article  Google Scholar 

  110. Samorì C, Barreiro DL, Vet R, Pezzolesi L, Brilman DW, Galletti P, Tagliavini E (2013) Effective lipid extraction from algae cultures using switchable solvents. Green Chem 15(2):353–356

    Article  Google Scholar 

  111. de Melo JR, Tres MV, Steffens J, Oliveira JV, Di Luccio M (2015) Desolventizing organic solvent-soybean oil miscella using ultrafiltration ceramic membranes. J Membr Sci 475:357–366

    Article  Google Scholar 

  112. Law SQ, Chen B, Scales PJ, Martin GJ (2017) Centrifugal recovery of solvent after biphasic wet extraction of lipids from a concentrated slurry of Nannochloropsis sp. biomass. Algal Res 24:299–308

    Article  Google Scholar 

  113. Knothe G (2009) Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ Sci 2(7):759–766

    Article  Google Scholar 

  114. Olmstead IL, Hill DR, Dias DA, Jayasinghe NS, Callahan DL, Kentish SE, Scales PJ, Martin GJO (2013) A quantitative analysis of microalgal lipids for optimization of biodiesel and omega-3 production. Biotechnol Bioeng 110(8):2096–2104

    Article  Google Scholar 

  115. Anand M, Farooqui SA, Kumar R, Joshi R, Kumar R, Sibi MG, Singh H, Sinha AK (2016) Optimizing renewable oil hydrocracking conditions for aviation bio-kerosene production. Fuel Process Technol 151:50–58

    Article  Google Scholar 

  116. Trivedi J, Aila M, Bangwal D, Kaul S, Garg M (2015) Algae based biorefinery—how to make sense? Renew Sustain Energy Rev 47:295–307

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation for Young Scientists of China (No. 51606020), the International Cooperation and Exchange of the National Natural Science Foundation of China (No. 51561145013) and the National Key Research and Development Program of China (No. 2016YFB0601002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, Y., Huang, Y., Martin, G.J.O., Chen, R., Ding, Y. (2018). Photoautotrophic Microalgal Cultivation and Conversion. In: Liao, Q., Chang, Js., Herrmann, C., Xia, A. (eds) Bioreactors for Microbial Biomass and Energy Conversion. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7677-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7677-0_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7676-3

  • Online ISBN: 978-981-10-7677-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics