Skip to main content

Role of Bioreactors in Microbial Biomass and Energy Conversion

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Bioenergy is the world’s largest contributor to the renewable and sustainable energy sector, and it plays a significant role in various energy industries. A large amount of research has contributed to the rapidly evolving field of bioenergy and one of the most important topics is the use of the bioreactor. Bioreactors play a critical role in the successful development of technologies for microbial biomass cultivation and energy conversion . In this chapter, after a brief introduction to bioreactors (basic concepts, configurations, functions, and influencing factors), the applications of the bioreactor in microbial biomass, microbial biofuel conversion , and microbial electrochemical systems are described. Importantly, the role and significance of the bioreactor in the bioenergy process are discussed to provide a better understanding of the use of bioreactors in managing microbial biomass and energy conversion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhu YH, Jiang JG (2008) Continuous cultivation of Dunaliella salina in photobioreactor for the production of β-carotene. Eur Food Res Technol 227(3):953–959

    Article  Google Scholar 

  2. Yongmanltchal W, Ward OP (1992) Growth and eicosapentaenoic acid production by Phaeodactylum tricornutum in batch and continuous culture systems. J Am Oil Chem Soc 69(6):584–590

    Article  Google Scholar 

  3. Turpin DH (1991) Effects of inorganic N availability on algal photosynthesis and carbon metabolism. J Phycol 27(1):14–20

    Article  Google Scholar 

  4. Sánchez JF, Fernández JM, Acién FG, Rueda A, Pérez-Parra J, Molina E (2008) Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochem 43(4):398–405

    Article  Google Scholar 

  5. McNaught AD, Wilkinson A (2006) IUPAC compendium of chemical terminology. Encyclopedic dictionary of polymers

    Google Scholar 

  6. Bitog JPP, Lee IB, Oh HM, Hong SW, Seo IH, Kwon KS (2014) Optimised hydrodynamic parameters for the design of photobioreactors using computational fluid dynamics and experimental validation. Biosyst Eng 122(3):42–61

    Article  Google Scholar 

  7. Bitog JP, Lee IB, Lee CG, Kim KS, Hwang HS, Hong SW, Seo IH, Kwon KS, Mostafa E (2011) Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: a review. Comput Electron Agr 76(2):131–147

    Article  Google Scholar 

  8. Hase R, Oikawa H, Sasao C, Morita M, Watanabe Y (2000) Photosynthetic production of microalgal biomass in a raceway system under greenhouse conditions in Sendai city. J Biosci Bioeng 89(2):157–163

    Article  Google Scholar 

  9. Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99(10):4021–4028

    Article  Google Scholar 

  10. Razzak SA, Hossain MM, Lucky RA, Bassi AS, Lasa HD (2013) Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—a review. Renew Sustain Energy Rev 27(6):622–653

    Article  Google Scholar 

  11. Zhang K, Kurano N, Miyachi S (2002) Optimized aeration by carbon dioxide gas for microalgal production and mass transfer characterization in a vertical flat-plate photobioreactor. Bioprocess Biosyst Eng 25(2):97–101

    Article  Google Scholar 

  12. Pulzl O, Gerbsch N, Buchholz R (1995) Light energy supply in plate-type and light diffusing optical fiber bioreactors. J Appl Phycol 7(2):145–149

    Article  Google Scholar 

  13. Tredici MR, Carlozzi P, Zittelli GC, Materassi R (1991) A vertical alveolar panel (VAP) for outdoor mass cultivation of microalgae and cyanobacteria. Bioresour Technol 38(2–3):153–159

    Article  Google Scholar 

  14. Rubio FC, Fernandez FG, Perez JA, Camacho FG, Grima EM (2015) Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnol Bioeng 62(1):71–86

    Article  Google Scholar 

  15. CY C, KL Y, R A, DJ L, JS C (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102(1):71–81

    Google Scholar 

  16. Decker EL, Reski R (2008) Current achievements in the production of complex biopharmaceuticals with moss bioreactors. Bioprocess Biosyst Eng 31(1):3–9

    Article  Google Scholar 

  17. Weissman JC, Goebel RP (1987) Design and analysis of microalgal open pond systems for the purpose of producing fuels. Energy 98

    Google Scholar 

  18. Becker W (2004) Microalgae in human and animal nutrition. Blackwell Publishing Ltd

    Google Scholar 

  19. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    Article  Google Scholar 

  20. Oncel S, Sukan FV (2008) Comparison of two different pneumatically mixed column photobioreactors for the cultivation of Artrospira platensis (Spirulina platensis). Bioresour Technol 99(11):4755–4760

    Article  Google Scholar 

  21. Fan LH, Zhang YT, Cheng LH, Zhang L, Tang DS, Chen HL (2010) Optimization of carbon dioxide fixation by Chlorella vulgaris cultivated in a membrane-photobioreactor. Chem Eng Technol 30(8):1094–1099

    Article  Google Scholar 

  22. Ap C, La M, Fx M (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22(6):1490–1506

    Article  Google Scholar 

  23. Pirouzi A, Nosrati M, Shojaosadati SA, Shakhesi S (2014) Improvement of mixing time, mass transfer, and power consumption in an external loop airlift photobioreactor for microalgae cultures. Biochem Eng J 87(12):25–32

    Article  Google Scholar 

  24. Mehlitz TH (2014) Temperature influence and heat management requirements of microalgae cultivation in photobioreactors

    Google Scholar 

  25. Vogel M, Günther A, Rossberg A, Li B, Bernhard G, Raff J (2010) Biosorption of U(VI) by the green algae Chlorella vulgaris in dependence of pH value and cell activity. Sci Total Environ 409(2):384–395

    Article  Google Scholar 

  26. Maagd GJD, Hendriks AJ, Seinen W, Sijm DTHM (1999) pH-dependent hydrophobicity of the cyanobacteria toxin microcystin-LR. Water Res 33(3):677–680

    Article  Google Scholar 

  27. Chiswell RK, Shaw GR, Eaglesham G, Smith MJ, Norris RL, Seawright AA, Moore MR (2015) Stability of cylindrospermopsin, the toxin from the cyanobacterium, Cylindrospermopsis raciborskii: effect of pH, temperature, and sunlight on decomposition. Environ Toxicol 14(1):155–161

    Article  Google Scholar 

  28. Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57(3):287–293

    Article  Google Scholar 

  29. Chang H, Fu Q, Huang Y, Xia A, Liao Q, Zhu X (2017) Improvement of microalgae lipid productivity and quality in an ion-exchange-membrane photobioreactor using real municipal wastewater. Int J Agr Biol Eng 10:97–106

    Google Scholar 

  30. Chinnasamy S, Bhatnagar A, Claxton R, Das KC (2010) Biomass and bioenergy production potential of microalgae consortium in open and closed bioreactors using untreated carpet industry effluent as growth medium. Bioresour Technol 101(17):6751–6760

    Article  Google Scholar 

  31. Lehr F, Posten C (2009) Closed photo-bioreactors as tools for biofuel production. Curr Opin Biotechnol 20(3):280–285

    Article  Google Scholar 

  32. Zhang C, Zhu X, Liao Q, Wang Y, Li J, Ding Y, Wang H (2010) Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria. Int J Hydrog Energy 35(11):5284–52923

    Article  Google Scholar 

  33. Pen N, Soussan L, Belleville MP, Sanchez J, Charmette C, Paoluccijeanjean D (2014) An innovative membrane bioreactor for methane biohydroxylation. Bioresour Technol 174(174):42–52

    Article  Google Scholar 

  34. Zhang Z, Zhou X, Hu J, Zhang T, Zhu S, Zhang Q (2017) Photo-bioreactor structure and light-heat-mass transfer properties in photo-fermentative bio-hydrogen production system: a mini review. Int J Hydrog Energy

    Article  Google Scholar 

  35. Hu Q, Richmond A (1996) Productivity and photosynthetic efficiency of Spirulina platensis as affected by light intensity, cell density and rate of mixing in a flat plate photobioreactor. J Appl Phycol 8:139–145; J Appl Phycol 8(2):139–145

    Article  Google Scholar 

  36. Schultz MP (2000) Turbulent boundary layers on surfaces covered with filamentous algae. J Fluid Eng 122(2):357–363

    Article  Google Scholar 

  37. Ninno D, Power M (2012) Investigation of turbulent multiphase flows in a flat panel photobioreactor and consequent effects on microalgae cultivation; using computational fluid dynamics (CFD) simulation and particle image velocimetry (PIV) measurement. Dissertations and theses—gradworks

    Google Scholar 

  38. Liao Q, Yang YX, Zhu X, Wang H, Ding YD (2015) Lattice Boltzmann simulation on liquid flow and mass transport in a bioreactor with cylinder bundle for hydrogen production. Heat Mass Transf 51(6):859–873

    Article  Google Scholar 

  39. Sikula I, Juraščík M, Markoš J (2007) Modeling of fermentation in an internal loop airlift bioreactor. Chem Eng Sci 62(18):5216–5221

    Article  Google Scholar 

  40. Zhang JB, Poncin S, Wu J, Li HZ (2011) A multiscale approach for studying an anaerobic multiphase bioreactor. Chem Eng Sci 66(14):3423–3431

    Article  Google Scholar 

  41. Laukevics JJ, Apsite AF, Viesturs US, Tengerdy RP (1985) Steric hindrance of growth of filamentous fungi in solid substrate fermentation of wheat straw. Biotechnol Bioeng 27(12):1687–1691

    Article  Google Scholar 

  42. Rathbun BL, Shuler ML (1983) Heat and mass transfer effect in static solid- substrate fermentation, design of fermentation chambers. Biotechnol Bioeng 25(4):929–938

    Article  Google Scholar 

  43. Rajagopalan S, Modak JM (1995) Modeling of heat and mass transfer for solid state fermentation process in tray bioreactor. Biotechnol Bioprocess E 13(3):161–169

    Article  Google Scholar 

  44. Valiorgue P, Hadid HB, Hajem ME, Rimbaud L, Muller-Feuga A, Champagne JY (2014) CO2 mass transfer and conversion to biomass in a horizontal gas–liquid photobioreactor. Chem Eng Res Des 92(10):1891–1897

    Article  Google Scholar 

  45. Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25(3):743–756

    Article  Google Scholar 

  46. Delrue F, Setier PA, Sahut C, Cournac L, Roubaud A, Peltier G, Froment AK (2012) An economic, sustainability, and energetic model of biodiesel production from microalgae. Bioresour Technol 111(3):191–200

    Article  Google Scholar 

  47. Jacoblopes E, Scoparo CHG, Queiroz MI, Franco TT (2010) Biotransformations of carbon dioxide in photobioreactors. Energy Convers Manag 51(5):894–900

    Article  Google Scholar 

  48. Murphy TE (2013) Artificial leaf for biofuel production and harvesting: transport phenomena and energy conversion

    Google Scholar 

  49. Akkerman I, Janssen M, Rocha J, Wijffels RH (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrog Energy 27(11–12):1195–1208

    Article  Google Scholar 

  50. Markov SA, Bazin MJ, Hall DO (1996) Efficiency of light energy conversion in hydrogen production by cyanobacterium Anabaena variabilis. J Mar Biotechnol 4(1):57–60

    Google Scholar 

  51. Cui QF, Jin YR, Ma C, Wu YN (2014) Continuous hydrogen production in a novel photo-bioreactor with high light conversion efficiency. Adv Mater Res 953–954:970–973

    Article  Google Scholar 

  52. Tredici MR, Zittelli GC, Benemann JR (1998) A tubular integral gas exchange photobioreactor for biological hydrogen production. Biohydrogen

    Google Scholar 

  53. Das D, Veziroǧlu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy 26(1):13–28

    Article  Google Scholar 

  54. Pörtner R, Barradas OP, Frahm B, Hass VC (2017) Advanced process and control strategies for bioreactors

    Chapter  Google Scholar 

  55. Zhang Quanguo, Jianjun Hu, Lee D-J (2016) Biogas from anaerobic digestion processes: research updates. Renew Energy 98:108–119

    Article  Google Scholar 

  56. Gonçalves AL, Simões M (2017) Metabolic engineering of Escherichia coli for higher alcohols production: an environmentally friendly alternative to fossil fuels. Renew Sustain Energy Rev 77:580–589

    Article  Google Scholar 

  57. Atsumi S, Liao JC (2008) Metabolic engineering for advanced biofuels production from Escherichia coli. Curr Opin Biotechnol 19(5):414–419

    Article  Google Scholar 

  58. Lan EI, Liao JC (2012) Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresour Technol 135(2):339–349

    Google Scholar 

  59. Walter WG (1971) Standard methods for the examination of water and wastewater. APHA

    Google Scholar 

  60. Adessi A, De Philippis R (2014) Photobioreactor design and illumination systems for H2 production with anoxygenic photosynthetic bacteria: a review. Int J Hydrog Energy 39(7):3127–3141

    Article  Google Scholar 

  61. Chunlan Mao, Yongzhong Feng, Xiaojiao Wang, Guangxin R (2015) Review on research achievements of biogas from anaerobic digestion. Renew Sustain Energy Rev 45:540–555

    Article  Google Scholar 

  62. Şentürk E, İnce M, Engi̇N GO (2012) The effect of transient loading on the performance of a mesophilic anaerobic contact reactor at constant feed strength. J Biotechnol 164(2):232

    Article  Google Scholar 

  63. Tauseef SM, Abbasi T, Abbasi SA (2013) Energy recovery from wastewaters with high-rate anaerobic digesters. Renew Sustain Energy Rev 19(1):704–741

    Article  Google Scholar 

  64. Bodkhe S (2008) Development of an improved anaerobic filter for municipal wastewater treatment. 99(1):222–226

    Google Scholar 

  65. Wang J, Wan W (2009) Factors influencing fermentative hydrogen production: a review. Int J Hydrog Energy 34(2):799–811

    Article  Google Scholar 

  66. Hawkes F, Hussy I, Kyazze G, Dinsdale R, Hawkes D (2007) Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int J Hydrog Energy 32(2):172–184

    Article  Google Scholar 

  67. Mcduffie NG (1991) Bioreactor design fundamentals. Butterworth-Heinemann

    Chapter  Google Scholar 

  68. Nguyen D, Gadhamshetty V, Nitayavardhana S, Khanal SK (2015) Automatic process control in anaerobic digestion technology: a critical review. Bioresour Technol 193:513–522

    Article  Google Scholar 

  69. Khanal S, Giri B, Nitayavardhana S, Gadhamshetty V (2016) Anaerobic bioreactors/digesters: design and development. Curr Dev Biotechnol Bioeng: Biol Treat Ind Effl 261

    Google Scholar 

  70. Das D, Veziroglu TN (2008) Advances in biological hydrogen production processes. Int J Hydrog Energy 33(21):6046–6057

    Article  Google Scholar 

  71. Haixing C, Qiang L, Qian F, Yun H, Ao X, Yaping Z, Yahui S, Xun Z (2017) Phase-feeding strategy for Chlorella vulgaris to enhance biomass and lipid productivity. Int J Agr Biol Eng 10(2):205–215

    Google Scholar 

  72. Chang H-X, Fu Q, Huang Y, Xia A, Liao Q, Zhu X, Zheng Y-P, Sun C-H (2016) An annular photobioreactor with ion-exchange-membrane for non-touch microalgae cultivation with wastewater. Bioresour Technol 219:668–676

    Article  Google Scholar 

  73. Clark IC, Zhang RH, Upadhyaya SK (2012) The effect of low pressure and mixing on biological hydrogen production via anaerobic fermentation. Int J Hydrog Energy 37(15):11504–11513

    Article  Google Scholar 

  74. Soccol CR (2017) Recent developments and innovations in solid state fermentation. Biotechnol Res Innov

    Google Scholar 

  75. Chen CY, Liu CH, Lo YC, Chang JS (2011) Perspectives on cultivation strategies and photobioreactor designs for photo-fermentative hydrogen production. Bioresour Technol 102(18):8484–8492

    Article  Google Scholar 

  76. Duu-Jong L, Jo-Shu C, Juin-Yih L (2015) Microalgae-microbial fuel cell: a mini review. Bioresour Technol 198:891–895

    Article  Google Scholar 

  77. Nakada E, Asada Y, Arai T, Miyake J (1995) Light penetration into cell suspensions of photosynthetic bacteria and relatioin to hydrogen production. J Ferment Bioeng 80(1):53–57

    Article  Google Scholar 

  78. Akkerman I, Janssen M, Rocha J, Wijffels RH (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrog Energy 27(11–12):1195–1208

    Article  Google Scholar 

  79. Ooms MD, Cao TD, Sargent EH, Sinton D (2016) Photon management for augmented photosynthesis. Nat Commun 7:12699

    Article  Google Scholar 

  80. Miyake J, Wakayama T, Schnackenberg J, Arai T, Asada Y (1999) Simulation of the daily sunlight illumination pattern for bacterial photo-hydrogen production. J Biosci Bioeng 88(6):659

    Article  Google Scholar 

  81. Carlozzi P (2000) Hydrodynamic aspects and Arthrospira growth in two outdoor tubular undulating row photobioreactors. Appl Microbiol Biotechnol 54(1):14–22

    Article  Google Scholar 

  82. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851

    Article  Google Scholar 

  83. Alfenore S, Molina-Jouve C (2016) Current status and future prospects of conversion of lignocellulosic resources to biofuels using yeasts and bacteria. Process Biochem 51(11):1747–1756

    Article  Google Scholar 

  84. Dale BE, Leong CK, Pham TK, Esquivel VM, Rios I, Latimer VM (1996) Hydrolysis of lignocellulosics at low enzyme levels: application of the AFEX process. Bioresour Technol 56(1):111–116

    Article  Google Scholar 

  85. Wang H, Ren ZJ (2013) A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol Adv 31(8):1796–1807

    Article  Google Scholar 

  86. Kelly PT, He Z (2014) Nutrients removal and recovery in bioelectrochemical systems: a review. Bioresour Technol 153:351–360

    Article  Google Scholar 

  87. Rozendal RA, Hamelers HVM, Rabaey K, Keller J, Buisman CJN (2008) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26(8):450–459

    Article  Google Scholar 

  88. He Z (2013) Microbial fuel cells: now let us talk about energy. Environ Sci Technol 47(1):332–333

    Article  Google Scholar 

  89. Han A, Hou H, Li L, Kim HS, de Figueiredo P (2013) Microfabricated devices in microbial bioenergy sciences. Trends Biotechnol 31(4):225–232

    Article  Google Scholar 

  90. Yu N, Xing D, Li W, Yang Y, Li Z, Li Y, Ren N (2017) Electricity and methane production from soybean edible oil refinery wastewater using microbial electrochemical systems. Int J Hydrog Energy 42(1):96–102

    Article  Google Scholar 

  91. Geppert F, Liu D, van Eerten-Jansen M, Weidner E, Buisman C, ter Heijne A (2016) Bioelectrochemical power-to-gas: state of the art and future perspectives. Trends Biotechnol 34(11):879–894

    Article  Google Scholar 

  92. Cai W, Han T, Guo Z, Varrone C, Wang A, Liu W (2016) Methane production enhancement by an independent cathode in integrated anaerobic reactor with microbial electrolysis. Bioresour Technol 208:13–18

    Article  Google Scholar 

  93. Feng Q, Song Y-C (2016) Surface modification of a graphite fiber fabric anode for enhanced bioelectrochemical methane production. Energy Fuel 30(8):6467–6474

    Article  Google Scholar 

  94. Pham TH, Aelterman P, Verstraete W (2009) Bioanode performance in bioelectrochemical systems: recent improvements and prospects. Trends Biotechnol 27(3):168–178

    Article  Google Scholar 

  95. Pandey P, Shinde VN, Deopurkar RL, Kale SP, Patil SA, Pant D (2016) Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl Energy 168:706–723

    Article  Google Scholar 

  96. Khan MD, Khan N, Sultana S, Joshi R, Ahmed S, Yu E, Scott K, Ahmad A, Khan MZ (2017) Bioelectrochemical conversion of waste to energy using microbial fuel cell technology. Process Biochem 57:141–158

    Article  Google Scholar 

  97. Zhang F, Ge Z, Grimaud J, Hurst J, He Z (2013) Long-term performance of liter-scale microbial fuel cells treating primary effluent installed in a municipal wastewater treatment facility. Environ Sci Technol 47(9):4941–4948

    Article  Google Scholar 

  98. Huggins T, Fallgren P, Jin S, Ren Z (2013) Energy and performance comparison of microbial fuel cell and conventional aeration treating of wastewater. J Microb Biochem Technol S 6(2)

    Google Scholar 

  99. EPA Office of Water (2006) Wastewater Management Fact Sheet, Energy Conservation, EPA 832-F-06–024. U.S. Environmental Protection Agency: Washington DC, p 7

    Google Scholar 

  100. Oh ST, Kim JR, Premier GC, Lee TH, Kim C, Sloan WT (2010) Sustainable wastewater treatment: how might microbial fuel cells contribute. Biotechnol Adv 28(6):871–881

    Article  Google Scholar 

  101. Logan BE (2004) Extracting hydrogen and electricity from renewable resources. Environ Sci Technol 38(9):160A–167A

    Article  Google Scholar 

  102. Liu H, Hu H, Chignell J, Fan Y (2010) Microbial electrolysis: novel technology for hydrogen production from biomass. Biofuels 1(1):129–142

    Article  Google Scholar 

  103. van Eerten-Jansen MCAA, Jansen NC, Plugge CM, de Wilde V, Buisman CJN, ter Heijne A (2015) Analysis of the mechanisms of bioelectrochemical methane production by mixed cultures. J Chem Technol Biot 90(5):963–970

    Article  Google Scholar 

  104. Gajaraj S, Huang Y, Zheng P, Hu Z (2017) Methane production improvement and associated methanogenic assemblages in bioelectrochemically assisted anaerobic digestion. Biochem Eng J Part B 117:105–112

    Article  Google Scholar 

  105. Cao X, Huang X, Liang P, Xiao K, Zhou Y, Zhang X, Logan BE (2009) A new method for water desalination using microbial desalination cells. Environ Sci Technol 43(18):7148–7152

    Article  Google Scholar 

  106. Kim H-W, Nam J-Y, Shin H-S (2011) Ammonia inhibition and microbial adaptation in continuous single-chamber microbial fuel cells. J Power Sources 196(15):6210–6213

    Article  Google Scholar 

  107. Wang Y-K, Sheng G-P, Shi B-J, Li W-W, Yu H-Q (2013) A novel electrochemical membrane bioreactor as a potential net energy producer for sustainable wastewater treatment. Sci Rep 3:1864

    Article  Google Scholar 

  108. Nam J-Y, Kim H-W, Shin H-S (2010) Ammonia inhibition of electricity generation in single-chambered microbial fuel cells. J Power Sources 195(19):6428–6433

    Article  Google Scholar 

  109. Gao C, Liu L, Yang F (2017) Development of a novel proton exchange membrane-free integrated MFC system with electric membrane bioreactor and air contact oxidation bed for efficient and energy-saving wastewater treatment. Bioresour Technol 238:472–483

    Article  Google Scholar 

  110. Liu H, Ramnarayanan R, Logan BE (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38(7):2281–2285

    Article  Google Scholar 

  111. Najafabadi AT, Ng N, Gyenge E (2016) Electrochemically exfoliated graphene anodes with enhanced biocurrent production in single-chamber air-breathing microbial fuel cells. Biosens Bioelectron 81:103–110

    Article  Google Scholar 

  112. Ye D, Deng B, Li J, Zou W, Ke C, Yuan Z, Zhu X, Liao Q (2016) Electricity production of a microbial fuel cell stack integrated into a sink drain pipe. Res Chem Intermed 42:1–12

    Article  Google Scholar 

  113. Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39(20):8077–8082

    Article  Google Scholar 

  114. Li Z, Yao L, Kong L, Liu H (2008) Electricity generation using a baffled microbial fuel cell convenient for stacking. Bioresour Technol 99(6):1650–1655

    Article  Google Scholar 

  115. Jiang X, Hu J, Petersen ER, Fitzgerald LA, Jackan CS, Lieber AM, Ringeisen BR, Lieber CM, Biffinger JC (2013) Probing single- to multi-cell level charge transport in Geobacter sulfurreducens DL-1. Nat Commun 4:2751

    Article  Google Scholar 

  116. Kim BJ, Chu I, Jusuf S, Kuo T, TerAvest MA, Angenent LT, Wu M (2016) Oxygen tension and riboflavin gradients cooperatively regulate the migration of Shewanella oneidensis MR-1 revealed by a hydrogel-based microfluidic device. Front Microbiol 7:1438

    Google Scholar 

  117. Humphries J, Xiong L, Liu J, Prindle A, Yuan F, Arjes HA, Tsimring L, Süel GM (2017) Species-independent attraction to biofilms through electrical signaling. Cell 168(1–2):200–209.e212

    Article  Google Scholar 

  118. Liu J, Martinez-Corral R, Prindle A, D-yD Lee, Larkin J, Gabalda-Sagarra M, Garcia-Ojalvo J, Süel GM (2017) Coupling between distant biofilms and emergence of nutrient time-sharing. Science 356(6338):638

    Article  Google Scholar 

  119. Massalha H, Korenblum E, Malitsky S, Shapiro OH, Aharoni A (2017) Live imaging of root–bacteria interactions in a microfluidics setup. Proc Natl Acad Sci USA 114(17):4549–4554

    Article  Google Scholar 

  120. Qian F, Baum M, Gu Q, Morse DE (2009) A 1.5 [small micro]L microbial fuel cell for on-chip bioelectricity generation. Lab Chip 9(21):3076–3081

    Article  Google Scholar 

  121. Qian F, He Z, Thelen MP, Li Y (2011) A microfluidic microbial fuel cell fabricated by soft lithography. Bioresour Technol 102(10):5836–5840

    Article  Google Scholar 

  122. Dressaire E, Sauret A (2017) Clogging of microfluidic systems. Soft Matter 13(1):37–48

    Article  Google Scholar 

  123. Liu H, Leng F, Guan Y, Yao Y, Li Y, Xu S (2017) Simultaneous pollutant removal and electricity generation in a combined ABR-MFC-MEC system treating fecal wastewater. Water Air Soil Pollut 228(5):179

    Article  Google Scholar 

  124. Ledezma P, Stinchcombe A, Greenman J, Ieropoulos I (2013) The first self-sustainable microbial fuel cell stack. Phys Chem Chem Phys 15(7):2278–2281

    Article  Google Scholar 

  125. Oh SE, Logan BE (2007) Voltage reversal during microbial fuel cell stack operation. J Power Sources 167(1):11–17

    Article  Google Scholar 

  126. Liang P, Wu W, Wei J, Yuan L, Xia X, Huang X (2011) Alternate charging and discharging of capacitor to enhance the electron production of bioelectrochemical systems. Environ Sci Technol 45(15):6647–6653

    Article  Google Scholar 

  127. Kim Y, Hatzell MC, Hutchinson AJ, Logan BE (2011) Capturing power at higher voltages from arrays of microbial fuel cells without voltage reversal. Energy Environ Sci 4(11):4662–4667

    Article  Google Scholar 

  128. Wu PK, Biffinger JC, Fitzgerald LA, Ringeisen BR (2012) A low power DC/DC booster circuit designed for microbial fuel cells. Process Biochem 47(11):1620–1626

    Article  Google Scholar 

  129. Dong H, Yu H, Wang X (2012) Catalysis kinetics and porous analysis of rolling activated carbon-PTFE air-cathode in microbial fuel cells. Environ Sci Technol 46(23):13009–13015

    Article  Google Scholar 

  130. Yuan Y, Zhao B, Zhou S, Zhong S, Zhuang L (2011) Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells. Bioresour Technol 102(13):6887–6891

    Article  Google Scholar 

  131. Sun M, Zhai L-F, Li W-W, Yu H-Q (2016) Harvest and utilization of chemical energy in wastes by microbial fuel cells. Chem Soc Rev 45(10):2847–2870

    Article  Google Scholar 

  132. Yang W, Li J, Ye D, Zhang L, Zhu X, Liao Q (2016) A hybrid microbial fuel cell stack based on single and double chamber microbial fuel cells for self-sustaining pH control. J Power Sources 306:685–691

    Article  Google Scholar 

  133. Liu XW, Wang YP, Huang YX, Sun XF, Sheng GP, Zeng RJ, Li F, Dong F, Wang SG, Tong ZH (2011) Integration of a microbial fuel cell with activated sludge process for energy-saving wastewater treatment: taking a sequencing batch reactor as an example. Biotechnol Bioeng 108(6):1260–1267

    Article  Google Scholar 

  134. Wang Y-P, Liu X-W, Li W-W, Li F, Wang Y-K, Sheng G-P, Zeng RJ, Yu H-Q (2012) A microbial fuel cell–membrane bioreactor integrated system for cost-effective wastewater treatment. Appl Energy 98:230–235

    Article  Google Scholar 

  135. Li J, Zou W, Xu Z, Ye D, Zhu X, Liao Q (2013) Improved hydrogen production of the downstream bioreactor by coupling single chamber microbial fuel cells between series-connected photosynthetic biohydrogen reactors. Int J Hydrog Energy 38(35):15613–15619

    Article  Google Scholar 

  136. Kumar G, Saratale RG, Kadier A, Sivagurunathan P, Zhen G, Kim S-H, Saratale GD (2017) A review on bio-electrochemical systems (BESs) for the syngas and value added biochemicals production. Chemosphere 177:84–92

    Article  Google Scholar 

  137. Khare V, Nema S, Baredar P (2016) Solar–wind hybrid renewable energy system: a review. Renew Sustain Energy Rev 58:23–33

    Article  Google Scholar 

  138. Archer CL, Simão HP, Kempton W, Powell WB, Dvorak MJ (2017) The challenge of integrating offshore wind power in the U.S. electric grid. Part I: Wind forecast error. Renew Energy 103:346–360

    Article  Google Scholar 

  139. Wang ZL (2017) New wave power. Nature 542:159–160

    Article  Google Scholar 

  140. Aelterman P, Versichele M, Marzorati M, Boon N, Verstraete W (2008) Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. Bioresour Technol 99(18):8895–8902

    Article  Google Scholar 

  141. Zhang L, Zhu X, Li J, Liao Q, Ye D (2011) Biofilm formation and electricity generation of a microbial fuel cell started up under different external resistances. J Power Sources 196(15):6029–6035

    Article  Google Scholar 

  142. Zhang L, Zhu X, Kashima H, Li J, D-d Ye, Liao Q, Regan JM (2015) Anolyte recirculation effects in buffered and unbuffered single-chamber air-cathode microbial fuel cells. Bioresour Technol 179:26–34

    Article  Google Scholar 

  143. Patil SA, Harnisch F, Kapadnis B, Schröder U (2010) Electroactive mixed culture biofilms in microbial bioelectrochemical systems: the role of temperature for biofilm formation and performance. Biosens Bioelectron 26(2):803–808

    Article  Google Scholar 

  144. Bhattacharjee A, Khan M, Kleiman M, Hochbaum AI (2017) Effects of growth surface topography on bacterial signaling in coculture biofilms. ACS Appl Mater Inter 9(22):18531–18539

    Article  Google Scholar 

  145. Thomen P, Robert J, Monmeyran A, Bitbol A-F, Douarche C, Henry N (2017) Bacterial biofilm under flow: first a physical struggle to stay, then a matter of breathing. PLoS ONE 12(4):e0175197

    Article  Google Scholar 

  146. Li W, Sun J, Hu Y, Zhang Y, Deng F, Chen J (2014) Simultaneous pH self-neutralization and bioelectricity generation in a dual bioelectrode microbial fuel cell under periodic reversion of polarity. J Power Sources 268:287–293

    Article  Google Scholar 

  147. Liao Q, Zhang J, Li J, Ye D, Zhu X, Zheng J, Zhang B (2014) Electricity generation and COD removal of microbial fuel cells (MFCs) operated with alkaline substrates. Int J Hydrog Energy 39(33):19349–19354

    Article  Google Scholar 

  148. Park Y, Park S, Nguyen VK, Yu J, Torres CI, Rittmann BE, Lee T (2017) Complete nitrogen removal by simultaneous nitrification and denitrification in flat-panel air-cathode microbial fuel cells treating domestic wastewater. Chem Eng J 316:673–679

    Article  Google Scholar 

  149. Commault AS, Laczka O, Siboni N, Tamburic B, Crosswell JR, Seymour JR, Ralph PJ (2017) Electricity and biomass production in a bacteria-Chlorella based microbial fuel cell treating wastewater. J Power Sources 356:299–309

    Article  Google Scholar 

  150. Ma J, Wang Z, Suor D, Liu S, Li J, Wu Z (2014) Temporal variations of cathode performance in air-cathode single-chamber microbial fuel cells with different separators. J Power Sources 272:24–33

    Article  Google Scholar 

  151. Oliot M, Etcheverry L, Bergel A (2016) Removable air-cathode to overcome cathode biofouling in microbial fuel cells. Bioresour Technol 221:691–696

    Article  Google Scholar 

  152. Zhang B, Hao L, Tian C, Yuan S, Feng C, Ni J, Borthwick AGL (2015) Microbial reduction and precipitation of vanadium (V) in groundwater by immobilized mixed anaerobic culture. Bioresour Technol 192:410–417

    Article  Google Scholar 

  153. Bajracharya S, Yuliasni R, Vanbroekhoven K, Buisman CJN, Strik DPBTB, Pant D (2017) Long-term operation of microbial electrosynthesis cell reducing CO2 to multi-carbon chemicals with a mixed culture avoiding methanogenesis. Bioelectrochemistry 113:26–34

    Article  Google Scholar 

  154. Bajracharya S, ter Heijne A, Dominguez Benetton X, Vanbroekhoven K, Buisman CJN, Strik DPBTB, Pant D (2015) Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode. Bioresour Technol 195:14–24

    Article  Google Scholar 

  155. Xiao L, He Z (2014) Applications and perspectives of phototrophic microorganisms for electricity generation from organic compounds in microbial fuel cells. Renew Sustain Energy Rev 37:550–559

    Article  Google Scholar 

  156. Zarabadi MP, Paquet-Mercier F, Charette SJ, Greener J (2017) Hydrodynamic effects on biofilms at the biointerface using a microfluidic electrochemical cell: case study of Pseudomonas sp. Langmuir 33(8):2041–2049

    Article  Google Scholar 

  157. Ye D, Yang Y, Li J, Zhu X, Liao Q, Deng B, Chen R (2013) Performance of a microfluidic microbial fuel cell based on graphite electrodes. Int J Hydrog Energy 38(35):15710–15715

    Article  Google Scholar 

  158. Cheng S, Liu H, Logan BE (2006) Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ Sci Technol 40(7):2426–2432

    Article  Google Scholar 

  159. Jiang H, Ali MA, Xu Z, Halverson LJ, Dong L (2017) Integrated microfluidic flow-through microbial fuel cells. Sci Rep 7:41208

    Article  Google Scholar 

  160. Rabaey K, Ossieur W, Verhaege M, Verstraete W (2005) Continuous microbial fuel cells convert carbohydratesto electricity. Water Sci Technol 52(1–2):515–523

    Article  Google Scholar 

  161. Xie X, Hu L, Pasta M, Wells GF, Kong D, Criddle CS, Cui Y (2011) Three-dimensional carbon nanotube−textile anode for high-performance microbial fuel cells. Nano Lett 11(1):291–296

    Article  Google Scholar 

  162. Liao Q, Zhang J, Li J, Ye D, Zhu X, Zhang B (2015) Increased performance of a tubular microbial fuel cell with a rotating carbon-brush anode. Biosens Bioelectron 63:558–561

    Article  Google Scholar 

  163. Zhang L, Li J, Zhu X, D-d Ye, Liao Q (2015) Effect of proton transfer on the performance of unbuffered tubular microbial fuel cells in continuous flow mode. Int J Hydrog Energy 40(10):3953–3960

    Article  Google Scholar 

  164. Ma J, Wang Z, Zhang J, Waite TD, Wu Z (2017) Cost-effective Chlorella biomass production from dilute wastewater using a novel photosynthetic microbial fuel cell (PMFC). Water Res 108:356–364

    Article  Google Scholar 

  165. Jadhav DA, Jain SC, Ghangrekar MM (2017) Simultaneous wastewater treatment, algal biomass production and electricity generation in clayware microbial carbon capture cells. Appl Biochem Biotechnol 1–17

    Google Scholar 

  166. Saba B, Christy AD, Yu Z, Co AC (2017) Sustainable power generation from bacterio-algal microbial fuel cells (MFCs): an overview. Renew Sustain Energy Rev 73:75–84

    Article  Google Scholar 

  167. Zhou M, He H, Jin T, Wang H (2012) Power generation enhancement in novel microbial carbon capture cells with immobilized Chlorella vulgaris. J Power Sources 214:216–219

    Article  Google Scholar 

  168. Sharma M, Bajracharya S, Gildemyn S, Patil SA, Alvarez-Gallego Y, Pant D, Rabaey K, Dominguez-Benetton X (2014) A critical revisit of the key parameters used to describe microbial electrochemical systems. Electrochim Acta 140:191–208

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Funds for Distinguished Young Scholar (No. 51325602), the National Science Foundation for Young Scientists of China (No. 51606022), Scientific Research Foundation for Returned Overseas Chinese Scholars of Chongqing, China (No. cx2017020), Natural Science Foundation of Chongqing, China (No. cstc2017jcyjAX0203) and the Fundamental Research Funds for the Central Universities (No. 106112016CDJXY145504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, L., Zhang, B., Zhu, X., Chang, H., Ou, S., Wang, H. (2018). Role of Bioreactors in Microbial Biomass and Energy Conversion. In: Liao, Q., Chang, Js., Herrmann, C., Xia, A. (eds) Bioreactors for Microbial Biomass and Energy Conversion. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7677-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7677-0_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7676-3

  • Online ISBN: 978-981-10-7677-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics