Agroforestry pp 587-628 | Cite as

Multistrata Systems: Potentials and Challenges of Cocoa-based Agroforests in the Humid Tropics

  • B. Lojka
  • L. Pawera
  • M. Kalousová
  • L. Bortl
  • V. Verner
  • J. Houška
  • W. Vanhove
  • P. Van Damme


Multistrata agroforests comprise a wide range of agroforestry practices that includes assemblage of woody and nonwoody plant components, with the wide range of practices on the continuum from using shade trees in perennial plantation to very diversified agroforests that mimic the original forest-like structure. In the humid tropical lowlands, such systems often consist of cocoa (Theobroma cacao) grown under the shade of trees. In this review, we explore the reliability of research on and the feasibility of achieving the environmental and economic benefits of cocoa agroforests, highlighting future opportunities and challenges of cocoa growing. Unsustainable intensification in a form of monocultures with high agricultural inputs reduces ecological resilience of a land-use system, whereas paradoxically, environmental and climate changes require more than ever a higher capacity of land-use systems to cope with increasing global environmental pressure. Over the past decade, a number of new studies focusing on cocoa agroforests have been published. We review current cultivation of cocoa in the world and outline the establishment and management of cocoa agroforests. Further on, we explored the idea that cocoa agroforests could be a solution to prevent phenomenon of boom-and-bust cycle of cocoa cultivation and highlighted the possibilities for improvement of cocoa cultivation using its vast genetic base. Then the benefits of cocoa agroforests for (agro)biodiversity and soil conservation are summarized and economic perspectives of multistrata systems assessed. In final discussion, we performed a SWOT analysis, highlighting future opportunities and challenges and proposing recommendation to improve the extension, adoption and sustainability of cocoa agroforests.


Agrobiodiversity Cocoa farming Genetic diversity Soil management SWOT analysis Theobroma cacao 



We would like to give thanks especially to Dr. Philippe Vaast for reviewing the final draft of the paper and his valuable comments to the text. We would like to acknowledge Dr. Dirk Lebe and Barbora Tumova from Sustainable Cocoa Production Program of Swisscontact, Indonesia, for their constructive comments to the text and Sumilia from Swisscontact for a rich discussion about cocoa agriculture and valuable feedback from the ground.


  1. Aikpokpodion P (2012) Defining genetic diversity in the chocolate tree, Theobroma cacao L. grown in West and Central Africa. In: Caliskan M (ed) Genetic diversity in plants. InTech, Zagreb, pp 185–212Google Scholar
  2. Aikpokpodion PO, Adetimirin VO, Guiltinan MJ, Eskes AB, Motamayor JC, Schnell RJ, Kolesnikova-Allen M (2010) Population structure and molecular characterization of Nigerian field genebank collections of cacao, Theobroma cacao L. Silvae Genet 59(6):273–285Google Scholar
  3. Alfaia SS, Ribeiro GA, Nobre AD et al (2004) Evaluation of soil fertility in smallholder agroforestry systems and pastures in western Amazonia. Agric Ecosyst Environ 102(3):409–414CrossRefGoogle Scholar
  4. Alfaro-Flores A, Morales-Belpaire I, Schneider M (2015) Microbial biomass and cellulase activity in soils under five different cocoa production systems in Alto Beni, Bolivia. Agrofor Syst 89(5):789–798CrossRefGoogle Scholar
  5. Andres C, Hermann C, Beerli A, Schneider M, Rist S, Jacobi J (2016) Cocoa in monoculture and dynamic agroforestry. In: Lichtfouse E (ed) Sustainable agriculture reviews. Springer, Cham, pp 121–153CrossRefGoogle Scholar
  6. Arshad FM, Bala BK, Alias EF, Abdulla I (2015) Modelling boom and bust of cocoa production systems in Malaysia. Ecol Model 309–310:22–32CrossRefGoogle Scholar
  7. Asare R (2006) A review on cocoa agroforestry as a means for biodiversity conservation. World Cocoa Foundation Partnership Conference, Brussels, p 15Google Scholar
  8. Atangana A, Khasa D, Chang S, Degrande A (2014) Tropical agroforestry. Springer, Dordrecht, p 380CrossRefGoogle Scholar
  9. Atta-Krah K, Kindt R, Skilton JN, Amaral W (2004) Managing biological and genetic diversity in tropical agroforestry. Agrofor Syst 61(1):183–194Google Scholar
  10. Avelino J, Ten Hoopen TM, DeClerck F (2011) Ecological control for pest and disease control in coffee and cacao agroecosystems in the neotropics. In: Rapidel B, Le Coq JF, Beer J (eds) Ecosystem services from agriculture and agroforestry: measurement and payment. Earthscan Publications, London, pp 91–117Google Scholar
  11. Bailey BA, Meinhardt LW (2016) Cacao diseases. A history of old enemies and new encounters. Springer International Publishing, Bern, p 633Google Scholar
  12. Bartley BG (2005) The genetic diversity of cacao and its utilization. CABI Publishing, Wallingford, p 341CrossRefGoogle Scholar
  13. Beer J (1987) Advantages, disadvantages and desirable characteristics of shade trees for coffee, cacao and tea. Agrofor Syst 5:3–13CrossRefGoogle Scholar
  14. Belsky JM, Siebert SF (2003) Cultivating cacao Implications of sun-grown cacao on local food security and environmental sustainability. Agric Hum Values 20(3):277–285CrossRefGoogle Scholar
  15. Bentley JW, Boa E, Stonehouse J (2004) Neighbor trees: shade, intercropping, and cacao in Ecuador. Hum Ecol 32(2):241–270CrossRefGoogle Scholar
  16. Berkes F, Folke C, Gadgil M (1995) Traditional ecological knowledge, biodiversity, resilience and sustainability. In: Perrings CA et al (eds) Biodiversity conservation. Springer International Publishing, Dordrecht, pp 281–299CrossRefGoogle Scholar
  17. Berkes F, Colding J, Folke C (2000) Rediscovery of traditional ecological knowledge as adaptive management. Ecol Appl 10(5):1251–1262CrossRefGoogle Scholar
  18. Bhagwat SA, Willis K, Birks HJB, Whittaker RJ (2008) Agroforestry: a refuge for tropical biodiversity? Trends Ecol Evol 23:261–267PubMedCrossRefGoogle Scholar
  19. Bieng MAN, Gidoin C, Avelino J, Cilas C, Deheuvels O, Wery J (2013) Diversity and spatial clustering of shade trees affect cacao yield and pathogen pressure in Costa Rican agroforests. Basic Appl Ecol 14:329–336CrossRefGoogle Scholar
  20. Bisseleua DHB, Missoup AD, Vidal S (2009) Biodiversity conservation, ecosystem functioning and economic incentives under cocoa agroforestry intensification. Conserv Biol 23(5):1176–1184PubMedCrossRefGoogle Scholar
  21. Bos MM, Steffan-Dewenter I, Tscharntke T (2007) The contribution of cacao agroforests to the conservation of lower canopy and and beetle diversity in Indonesia. Biodivers Conserv 16(8):2429–2444CrossRefGoogle Scholar
  22. Celedón MH (2006) Impacto del sistema agricola roza-tumba-quema sobre las caracterısticas de tres unidades de suelo en la selva Lacandona de Chiapas. PhD thesis. National University of Mexico, MexicoGoogle Scholar
  23. Cerda R, Deheuvels O, Calvache D, Niehaus L, Saenz Y, Kent J, Vilchez S, Villota A, Martinez C, Somarriba E (2014) Contribution of cocoa agroforestry systems to family income and domestic consumption: looking toward intensification. Agrofor Syst 88(6):957–981CrossRefGoogle Scholar
  24. Clay J (2004) World agriculture and the environment. Island Press, Washington, DC, 570pGoogle Scholar
  25. Clough Y, Faust H, Tscharntke T (2009) Cacao boom and bust: sustainability of agroforests and opportunities for biodiversity conservation. Conserv Lett 2(5):197–205CrossRefGoogle Scholar
  26. Clough Y, Barkmann J, Juhrbandt J, Kessler M, Wanger TC, Anshary A, Buchori D, Cicuzza D, Darras K, Putra DD, Erasmi S, Pitopang R, Schmidt C, Schulze CH, Seidel D, Steffan-dewenter I, Stenchly K, Vidal S, Weist M, Wielgoss AC, Tscharntke T (2011) Combining high biodiversity with high yields in tropical agroforests. Proc Natl Acad Sci U S A 108(20):8311–8316PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cocoa Sustainability Partnership (2013) The 2020 Road map to sustainable Indonesian Cocoa. Prepared by New Foresight Consultancy, Makassar, p 110Google Scholar
  28. Dahlquist RM, Whelan MP, Winowiecki L, Polidoro B, Candela S, Harvey CA, Wulfhorst JD, McDaniel PA, Bosque-Pérez NA (2007) Incorporating livelihoods in biodiversity conservation: a case study of cacao agroforestry systems in Talamanca, Costa Rica. Biodivers Conserv 16:2311–2333Google Scholar
  29. Dawoe EK, Isaac ME, Quashie-Sam J (2010) Litterfall and litter nutrient dynamics under cocoa ecosystems in lowland humid Ghana. Plant Soil 330(1):55–64CrossRefGoogle Scholar
  30. Dawoe EK, Quashie-Sam JS, Oppond SK (2013) Effect of land-use conversion from forest to cocoa agroforest on soil characteristics and quality of a Ferric Lixisol in lowland humid Ghana. Agrofor Syst 88(1):87–99Google Scholar
  31. Dawson IK, Guariguata MR, Loo J, Weber JC, Lengkeek A, Bush D, Cornelius J, Guarino L, Kindt R, Orwa C, Russel J, Jamnadass RH (2013) What is the relevance of smallholders’ agroforestry systems for conserving tropical tree species and genetic diversity in circa situm, in situ and ex situ settings? A review. Biodivers Conserv 22(2):301–324CrossRefGoogle Scholar
  32. Delabie JHC, Jahyny B, Do Nascimento IC, Mariano CSF, Lacau S, Campiolo S, Philpott SM, Leponce M (2007) Contribution of cocoa plantation to the conservation of native ants (Insecta: Hymenoptera: Formicidae) with a special emphasis on the Atlantic Forest Fauna of southern Bahia, Brasil. Biodivers Conserv 16(8):2359–2384CrossRefGoogle Scholar
  33. Dinarti D, Susilo AW, Meinhardt LW, Ji K, Motilal LA, Mischke S, Zhang D (2015) Genetic diversity and parentage in farmer selections of cacao from Southern Sulawesi, Indonesia revealed by microsatellite markers. Breed Sci 65(5):438–346PubMedPubMedCentralCrossRefGoogle Scholar
  34. Donald PF (2004) Biodiversity impacts of some agricultural commodity production systems. Conserv Biol 18:17–37CrossRefGoogle Scholar
  35. Duguma B, Gockowski J, Bakala J (2001) Smallholder Cacao (Theobroma cacao Linn.) cultivation in agroforestry systems of West and Central Africa: challenges and opportunities. Agrofor Syst 51:177–188CrossRefGoogle Scholar
  36. Efombagn MIB, Sounigo O, Nyassé S, Manzanares-Dauleux M, Cilas C, Eskes AB, Kolesnikova-Allen M (2006) Genetic diversity in cocoa germplasm of southern Cameroon revealed by simple sequences repeat (SSRs) markers. Afr J Biotechnol 5(16):1441–1449Google Scholar
  37. Efombagn MIB, Motamayor JC, Sounigo O, Eskes AB, Nyassé S, Cilas C, Schenll R, Manzanares-Dauleux M, Kolesnikova-Allen M (2008) Genetic diversity and structure of farm and genebank accessions of cacao (Theobroma cacao L.) in Cameroon revealed by microsatellite markers. Tree Genet Genomes 4(4):821–831CrossRefGoogle Scholar
  38. Efombagn MIB, Sounigo O, Nyassé S, Manzanares-Dauleux M, Eskes AB (2009) Phenotypic variation of cacao (Theobroma cacao L.) on farms and in the genebank in Cameroon. J Plant Breed Crop Sci 1(6):258–264Google Scholar
  39. Eskes AB, Efron Y (eds) (2006) Global approaches to cocoa germplasm utilization and conservation. Final report of the CFC/ICCO/IPGRI project on “Cocoa germplasm utilization and conservation: a global approach” (1998–2004). ICCO and IPGRI, London/Rome. Google Scholar
  40. FAO (2011) Second global plan of action for plant genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome, p 91Google Scholar
  41. FAOSTAT (2016) FAO online database.
  42. FAOSTAT (2017) FAO online database.
  43. Faria D, Barradas Paciencia ML, Dixo M, Laps RR, Baumgarten J (2007) Ferns, frogs, lizards, birds and bats in forest fragments and shade cacao plantations in two contrasting landscapes in the Atlantic forest, Brazil. Biodivers Conserv 16(8):2335–2357CrossRefGoogle Scholar
  44. Fitzherbert EB, Struebig MJ, Morel A, Danielson F, Bruhl CA, Donald PF, Phalan B (2008) How will oil palm expansion affect biodiversity? Trends Ecol Evol 23(10):538–545PubMedCrossRefGoogle Scholar
  45. Fontes AG, Gama-Rodrigues AC, Gama-Rodrigues EF et al (2014) Nutrient stocks in litterfall and litter in cocoa agroforests in Brazil. Plant Soil 383(1-2):313–335CrossRefGoogle Scholar
  46. Franzen M, Mulder MB (2007) Ecological, economic and social perspectives on cocoa production worldwide. Biodivers Conserv 16(13):3835–3849CrossRefGoogle Scholar
  47. Gama-Rodrigues EF, Nair PKR, Nair VD et al (2010) Carbon storage in soil size fractions under two cacao agroforestry systems in Bahia, Brazil. Environ Manag 45(2):274–283CrossRefGoogle Scholar
  48. Gama-Rodrigues EF, Gama-Rodrigues AC, Nair PKR (2011) Soil carbon sequestration in cacao agroforestry systems: a case study from Bahia, Brazil. In: Kumar BM, PKR N (eds) Carbon sequestration potential of agroforestry systems. Springer Netherlands, Dordrecht, pp 85–99CrossRefGoogle Scholar
  49. Gama-Rodrigues AC, MVS S, PSD S, Comerford NB, Cropper WP, Gama-Rodrigues EF (2014) An exploratory analysis of phosphorus transformations in tropical soils using structural equation modeling. Biogeochemistry 118:453–469Google Scholar
  50. Gidoin C, Avelino J, Deheuvels O, Cilas C, Bieng MAN (2014) Shade tree spatial structure andpod production explain frosty pod rot intensity in cacao agroforests, Costa Rica. Phytopathology 104:275–281PubMedCrossRefGoogle Scholar
  51. Gockowski JJ, Dury S (1999) The economics of cocoa-fruit agroforests in Southern Cameroon. In: Jiménez F, Beer J (eds) Multi-strata agroforestry systems with perennial crops. Proceedings of the International Symposium “Multi-strata Agroforestry Systems with Perennial Crops” CATIE, Turrialba, Costa Rica, pp 239–241Google Scholar
  52. Gockowski J, Sonwa D (2011) Cocoa intensification scenarios and their predicted impact on CO2 emissions, biodiversity conservation, and rural livelihoods in the Guinea rain forest of West Africa. Environ Manag 48:307–321CrossRefGoogle Scholar
  53. Greenberg R, Bichier P, Cruz Angón A (2000) The conservation value for birds of cacao plantations with diverse planted shade in Tabasco, Mexico. Anim Conserv 3:105–112CrossRefGoogle Scholar
  54. Groeneveld JH, Tscharntke T, Moser G, Clough Y (2010) Experimental evidence for stronger cacao yield limitation by pollination than by plant resources. Perspect Plant Ecol Evol Syst 12(3):183–191CrossRefGoogle Scholar
  55. Guariguata MR, Locatelli B, Haupt F (2012) Adapting tropical production forests to global climate change: risk perceptions and actions. Int Forest Rev 14(1):27–38Google Scholar
  56. Hartemink AE (2005) Nutrient stocks, nutrient cycling, and soil changes in cocoa ecosystems: a review. Adv Agron 86:227–253CrossRefGoogle Scholar
  57. Harvey CA, Gonzalez J (2007) Agroforestry systems conserve species-rich but modified assemblages of tropical birds and bats. Biodivers Conserv 16(8):2257–2292CrossRefGoogle Scholar
  58. Harvey CA, Gonzalez J, Somarriba E (2006) Dung beetle and terrestrial mammal diversity in forests, indigenous agroforestry systems and plantain monocultures in Talamanca, Costa Rica. Biodivers Conserv 15:555–585CrossRefGoogle Scholar
  59. Hashim GM, Ciesiolka CA, Yusoff WA, Nafis AW, Mispan MR, Rose CW, Coughlan KJ (1995) Soil erosion processes in sloping land in the east coast of Peninsular Malaysia. Soil Technol 8(3):215–233CrossRefGoogle Scholar
  60. Hertel D, Harteveld MA, Leuschner C (2009) Conversion of a tropical forest into agroforest alters the fine rootrelated carbon flux to the soil. Soil Biol Biochem 41:480–490Google Scholar
  61. ICCO (2012) How many smallholders are there worldwide producing cocoa? What proportion of cocoa worldwide is produced by smallholders? FAQ of International Cocoa Organization.
  62. Ickowitz A, Powell B, Salim MA, Sunderland TC (2014) Dietary quality and tree cover in Africa. Glob Environ Chang 24:287–294CrossRefGoogle Scholar
  63. Ickowitz A, Rowland D, Powell B, Salim MA, Sunderland TC (2016) Forests, trees, and micronutrient-rich food consumption in Indonesia. PLoS One 11(5):e0154139PubMedPubMedCentralCrossRefGoogle Scholar
  64. INGENIC (2009) Proceedings of the international workshop on cocoa breeding for farmers’ needs. 15–17th October 2006. San José, Costa Rica. In: Eskes A, Efron Y, End MJ, Bekele F (eds). INGENIC and CATIE, UK and Costa Rica, p 183Google Scholar
  65. Isaac ME, Timmer VR, Quashie-Sam SJ (2007) Shade tree effects in an 8-year-old cocoa agroforestry system: biomass and nutrient diagnosis of Theobroma cacao by vector analysis. Nutr Cycl Agroecosyst 78(2):155–165CrossRefGoogle Scholar
  66. Isaac ME, Anglaaere LCN, Borden K, Adu-Bredu S (2014) Intraspecific root plasticity in agroforestry systems across edaphic conditions. Agric Ecosyst Environ 185:16–23CrossRefGoogle Scholar
  67. Iwaro AD, Sreenivasan TN, Butler DR, Umaharan P (2000) Rapid screening for Phytophthora pod rot resistance by means of detached pod inoculation. In: Eskes AB, Engels JMM, Lass RA (eds) Proceedings of the CFC/ICCO/IPGRI Project Workshop. IPIGRI, Montpellier, pp 109–113Google Scholar
  68. Jacobi J, Schneider M, Bottazzi P, Pillco M, Calizaya P, Rist S (2013) Agroecosystem resilience and farmers’ perceptions of climate change impacts in cocoa farms in Alto Beni. Bolivia Renew Agric Food Syst 30:170–183CrossRefGoogle Scholar
  69. Jacobi J, Andres C, Schneider M, Pillco M, Calizaya P, Rist S (2014) Carbon stocks, tree diversity, and the role of organic certification in different cocoa production systems in Alto Beni, Bolivia. Agrofor Syst 88(6):1117–1132CrossRefGoogle Scholar
  70. Jacobi J, Bottazzi P, Schneider M, Huber S, Weidmann S, Rist S (2015) Farm resilience in organic and non-organic cocoa farming systems in Bolivia. Agroecol Sustain Food Syst 39(7):798–823CrossRefGoogle Scholar
  71. Jagoret P, Michel-Dounias I, Malézieux E (2011) Long-term dynamics of cocoa agroforests: a case study in central Cameroon. Agrofor Syst 81(3):267–278CrossRefGoogle Scholar
  72. Jagoret P, Kwesseu J, Messie C, Michel-Dounias I, Malézieux E (2014) Farmers’ assessment of the use value of agrobiodiversity in complex cocoa agroforestry systems in central Cameroon. Agrofor Syst 88(6):983–1000CrossRefGoogle Scholar
  73. Jagoret P, Enjalric F, Malézieux E (2015) Agroforestry-based diversification for planting cocoa in the Savannah of Central Cameroon. In: Ruf F, Schroth G (eds) Economics and ecology of diversification. Springer, Dordrecht, pp 253–269CrossRefGoogle Scholar
  74. Johns ND (1999) Conservation in Brazil’s chocolate forest: the unlikely persistence of the traditional cocoa agroecosystem. Environ Manag 23(1):31–47CrossRefGoogle Scholar
  75. Kehlenbeck K, Maass BL (2004) Crop diversity and classification of homegardens in Central Sulawesi, Indonesia. Agrofor Syst 63(1):53–62CrossRefGoogle Scholar
  76. Konam J, Namaliu Y, Daniel R, Guest D (2008) Integrated pest and disease management for sustainable cocoa production: a training manual for farmers and extension workers. Australian Centre for International Agricultural Research, Sydney, p 38Google Scholar
  77. Kummerow J, Kummerow M, Da Silva WS (1982) Fine root growth dynamics in cacao (Theobroma cacao). Plant Soil 65:193–201Google Scholar
  78. Lal R (1989) Agroforestry systems and soil surface management of a tropical alfisol. Agrofor Syst 8(2):97–111CrossRefGoogle Scholar
  79. Lanaud C, Fouet O, Clément D, Boccara M, Risterucci AM, Sujurdeo-Maharaj S, Legavre T, Argout X (2009) A meta–QTL analysis of disease resistance traits of Theobroma cacao L. Mol Breed 24:361–374CrossRefGoogle Scholar
  80. Lass T (2004) Balancing cocoa production and consumption. In: Flood J, Murphy R (eds) Cocoa futures – a source book on some important issues facing the cocoa industry. Commodities Press, Chinchina, pp 8–15Google Scholar
  81. Leakey RR, Tchoundjeu Z, Schreckenberg K, Shackleton SE, Shackleton CM (2005) Agroforestry tree products (AFTPs): targeting poverty reduction and enhanced livelihoods. Int J Agric Sustain 3(1):1–23CrossRefGoogle Scholar
  82. Lehmann J (2003) Subsoil root activity in tree-based cropping systems. Plant Soil 255(1):319–331CrossRefGoogle Scholar
  83. Lojka B, Lojková J, Banout J, Polesný Z, Preininger D (2008) Performance of an improved fallow system in the Peruvian Amazon—modeling approach. Agrofor Syst 72(1):27–39Google Scholar
  84. Mathez-Stiefel SL, Ayquipa-Valenzuela J, Corrales-Quispe R, Rosales-Richard L, Valdivia-Díaz M (2016) Identifying gender-sensitive agroforestry options: methodological considerations from the field. Mt Res Dev 36(4):417–430CrossRefGoogle Scholar
  85. McMahon P, Iswanto A, Susilo AW, Sulistyowati E, Wahab A, Imron M, Purwantarad A, Mufrihati E, Dewi VS, Lambert S et al (2009) On-farm selection for quality and resistance to pest/diseases of cocoa in Sulawesi: (i) performance of selections against cocoa pod borer, Conopomorpha cramerella. Int J Pest Manag 55:325–337CrossRefGoogle Scholar
  86. McNeely JA, Scherr SJ (2003) Ecoagriculture: strategies to feed the world and save wild biodiversity. Island Press, Washington, DC, p 323Google Scholar
  87. Moço MKS, Gama-Rodrigues EF, Gama-Rodrigues AC et al (2010) Relationships between invertebrate communities, litter quality and soil attributes under different cacao agroforestry systems in the south of Bahia, Brazil. Appl Soil Ecol 46(3):347–354CrossRefGoogle Scholar
  88. Monroe PHM, Gama-Rodrigues EF, Gama-Rodrigues AC, Marques JRB (2016) Soil carbon stocks and origin under different cacao agroforestry systems in Southern Bahia, Brazil. Agric Ecosyst Environ 221:99–108CrossRefGoogle Scholar
  89. Motamayor JC, Lanaud C (2002) Molecular analysis of the origin and domestication of Theobroma cacao L. In: Engels JMM, Ramanatha Rao V, Brown AHD, Jackson MT (eds) Managing plant genetic diversity. CABI Publishing, Wallingford, pp 77–87Google Scholar
  90. Motamayor JC, Risterucci AM, Heath M, Lanaud C (2003) Cacao domestication II: progenitor germplasm of the Trinitario cacao cultivar. Heredity 91(3):322–330PubMedCrossRefGoogle Scholar
  91. Motamayor JC, Lachenaud P, da Silva e Mota JW, Loor R, Kuhn DN, Brown JS, Schnell RJ (2008) Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L.). PLoS One 3: e3311Google Scholar
  92. Murniati GDP, Gintings AN (2001) The contribution of agroforestry systems to reducing farmers’ dependence on the resources of adjacent national parks: a case study from Sumatra, Indonesia. Agrofor Syst 52(3):171–184CrossRefGoogle Scholar
  93. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858PubMedCrossRefGoogle Scholar
  94. N’Goran JAK, Laurent V, Risterucci AM, Lanaud C (1994) Comparative genetic diversity studies of Theobroma cacao L. using RFLP and RAPD markers. Heredity 73(6):589–597CrossRefGoogle Scholar
  95. Oberson A et al (2006) Improving phosphorus fertility in tropical soils through biological interventions. In: Biological approaches to sustainable soil systems. CRC Press, Boca Raton, pp 531–546CrossRefGoogle Scholar
  96. Ofori-Frimpong K, Asase A, Mason J, Danku L (2007) Shaded versus unshaded cocoa: implications on litter fall, decomposition, soil fertility and cocoa pod development. Symposium multistrata Agroforestry Systems with Perennials Crop. CATIE Turrialba, Costa Rica 1721Google Scholar
  97. Opoku SY, Bhattacharjee R, Kolesnikova-Allen M, Enu-Kwesi L, Asante EG, Adu-Ampomah Y (2006) Impact of breeders collections on cocoa plantings of Ghana: assessment by molecular marker analysis and farmers field survey. J Ghana Sci Assoc 8(2):1–12Google Scholar
  98. Opoku SY, Bhattacharjee R, Kolesnikova-Allen M, Motamayor JC, Schnell R, Ingelbrecht I, Enu-Kwesi L, Adu-Ampomah Y (2007) Genetic diversity in cocoa (Theobroma cacao, L.) germplasm collection from Ghana. J Crop Impr 20(1/2):73–87CrossRefGoogle Scholar
  99. Owusu-Sekyere E, Cobbina J, Tsugiyuki M, Wakatsuki T (2006) Decomposition, nutrient release patterns and nutrient fluxes from leaf litter of secondary forests in Ghana. Ghana J Sci 44(1):59–72Google Scholar
  100. Panlibuton H, Meyer M (2004) ACDI/VOCA value chain assessment: Indonesia cocoa. Final report submitted to USAID, Indonesia, p 54Google Scholar
  101. Perdewa JG, Shively GE (2009) The economics of pest and production management in small-holder cocoa: lessons from Sulawesi. Bull Indones Econ Stud 45(3):373–389CrossRefGoogle Scholar
  102. Perfecto I, Armbrecht I, Philpott SM, Soto-Pinto L, Dietsch TM (2007) Shaded coffee and the stability of rainforest margins in northern Latin America. In: Tscharntke T, Leuschner C, Zeller M, Guhadja E, Bidin A (eds) The stability of tropical rainforest margins, linking ecological, economic and social constraints of land use and conservation, Environmental Science Series. Springer Verlag, Berlin, pp 227–264Google Scholar
  103. Pokou ND, N’Goran JAK, Lachenaud P, Eskes AB, Motamayor JC, Schnell R, KOlesnikova-Allen M, Clément D, Sangaré A (2009) Recurrent selection of cocoa populations in Cote d’Ivoire: comparative genetic diversity between the first and second cycles. Plant Breed 128(5):514–520CrossRefGoogle Scholar
  104. Poudel DD, Midmore DJ, West LT (2000) Farmer participatory research to minimize soil erosion on steepland vegetable systems in the Philippines. Agric Ecosyst Environ 79(2-3):113–127CrossRefGoogle Scholar
  105. Powell B, Thilsted SH, Ickowitz A, Termote C, Sunderland T, Herforth A (2015) Improving diets with wild and cultivated biodiversity from across the landscape. Food Sec 7(3):535–554CrossRefGoogle Scholar
  106. Rajab YA, Leuschner C, Barus H, Tjoa A, Hertel D (2016) Cacao cultivation under diverse shade tree cover allows high carbon storage and sequestration without yield losses. PLoS One 11(2):149–949Google Scholar
  107. Rice R, Greenberg A (2000) Cacao cultivation and the conservation of biological diversity. Ambio 29(3):167–173CrossRefGoogle Scholar
  108. Ricketts TH, Daily GC, Ehrlich PR, Michener CD (2004) Economic value of tropical forest to coffee production. Proc Natl Acad Sci U S A 101:12579–12582PubMedPubMedCentralCrossRefGoogle Scholar
  109. Rolim SG, Chiarello AG (2004) Slow death of Atlantic forest trees in cocoa agroforestry in southeastern Brazil. Biodivers Conserv 13(14):2679–2694CrossRefGoogle Scholar
  110. Rousseau GX, Deheuvels O, Rodriguez Arias I, Somarriba E (2012) Indicating soil quality in cacao-based agroforestry systems and old-growth forests: the potential of soil macrofauna assemblage. Ecol Indic 23:535–543CrossRefGoogle Scholar
  111. Ruf F (1995) From forest rent to tree-capital: basic ‘laws’ of cocoa supply. In: Ruf F, Siswoputranto PS (eds) Cocoa cycles: the economics of cocoa supply. Woodhead Publishers, London, pp 1–54Google Scholar
  112. Ruf F, Yoddang (2010) The paradigm of tight competition and ‘low quality’ product. The case of partially fermented cocoa in Sulawesi. In: Proceedings of the 16th international Cocoa research conference, Bali, Indonesia, November, 2009, COPAL, Lagos, Nigeria, pp 917–924Google Scholar
  113. Ruf FO (2011) The myth of complex cocoa agroforests: the case of Ghana. Hum Ecol 39(3):373–388CrossRefGoogle Scholar
  114. Ruf F, Schroth G (2004) Chocolate forests and monocultures: a historical review of cocoa growing and its conflicting role in tropical deforestation and forest conservation. In: Schroth G, DaFonseca GAB, Harvey CA, Gascon C, Vasconcelos HL, Izac AMN (eds) Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington, DC, pp 107–133Google Scholar
  115. Ruf F, Schroth G (eds) (2015) Economics and ecology of diversification: the case of tropical tree crops. Springer, Dordrecht, p 340Google Scholar
  116. Sambuichi RHR, Haridasan M (2007) Recovery of species richness and conservation of native Atlantic forest trees in the cacao plantations of southern Bahia in Brazil. Biodivers Conserv 16(13):3681–3701CrossRefGoogle Scholar
  117. Schneider M, Andres C, Trujillo G, Alcon F, Amurrio P, Perez E, Weibel F, Milz J (2016) Cocoa and total system yields of organic and conventional agroforestry vs. monoculture systems in a long-term field trial in Bolivia. Exp Agric:1–24.
  118. Schroth G, Harvey CA (2007) Biodiversity conservation in cocoa production landscapes: an overview. Biodivers Conserv 16(8):2237–2244CrossRefGoogle Scholar
  119. Schroth G, Krauss U, Gasparotto L, Duarte Aguilar JA, Vohland K (2000) Pests and diseases in agroforestry systems of the humid tropics. Agrofor Syst 50:199–241CrossRefGoogle Scholar
  120. Schroth G, Harvey CA, Vincent G (2004) Complex agroforests: their structure, diversity, and potential role in landscape conservation. In: Schroth G, DaFonseca GAB, Harvey CA, Gascon C, Vasconcelos HL, Izac AMN (eds) Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington, DC, pp 227–260Google Scholar
  121. Sidle RC, Ziegler AD, Negishi JN, Nik AR, Siew R, Turkelboom F (2006) Erosion processes in steep terrain-Truths, myths, and uncertainties related to forest management in Southeast Asia. For Ecol Manag 224:199–225Google Scholar
  122. Siebert SF (2002) From shade- to sun-grown perennial crops in Sulawesi, Indonesia: implications for biodiversity conservation and soil fertility. Biodivers Conserv 11:1889–1902CrossRefGoogle Scholar
  123. Smith Dumont E, Gnahoua GM, Ohouo L, Sinclair FL, Vaast P (2014) Farmers in Côte d’Ivoire value integrating tree diversity in cocoa for the provision of ecosystem services. Agrofor Syst 88:1047–1066CrossRefGoogle Scholar
  124. Snoeck D, Afrifa AA, Ofori-Frimpong K, Boateng E, Abekoe M (2009) Mapping fertilizer recommendations for Cocoa production in Ghana using soil diagnostic and GIS tools. West Afr J App Ecol 17:97–107Google Scholar
  125. Soberanis W, Rios R, Arevalo E, Zuniga L, Cabezas O, Krauss U (1999) Increased frequency of phytosanitary pod removal in cacao (Theobroma cacao) increases yield economically in eastern Peru. Crop Prot 10:677–685CrossRefGoogle Scholar
  126. Sonwa DJ, Nkongmeneck BA, Weise SF, Tchatat M, Adesina AA, Janssens MJJ (2007) Diversity of plants in cocoa agroforests in the humid forest zone of Southern Cameroon. Biodivers Conserv 16(8):2385–2400CrossRefGoogle Scholar
  127. Sounigo O, Umaharan R, Christopher Y, Sankar A, Ramdahin S (2005) Assessing the genetic diversity in the international cocoa genebank, Trinidad (ICG,T) using isozyme electrophoresis and RAPD. Genet Resour Crop Evol 52(8):1111–1120CrossRefGoogle Scholar
  128. Steffan-Dewenter I, Kessler M, Barkmann J, Bos MM, Buchori D, Erasmi S, Faust H, Gerold G, Glenk K, Gradstein SR, Guhardja E, Harteveld M, Hertel D, Hohn P, Kappas M, Kohler S, Leuschner C, Maertens M, Marggraf R, Migge-Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A, Tjitrosoedirdjo SS, Tjitrosoemito S, Twele A, Weber R, Woltmann L, Zeller M, Tscharntke T (2007) Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification. Proc Natl Acad Sci U S A 104(12):4973–4978PubMedPubMedCentralCrossRefGoogle Scholar
  129. Stenchly K, Clough Y, Tscharntke T (2012) Spider species richness in cocoa agroforestry systems, comparing vertical strata, local management and distance to forest. Agric Ecosyst Environ 149:189–194CrossRefGoogle Scholar
  130. Susilo AW, Mawardi S, Sudarsianto (2009) Keragaan dayahasil klon kakao (Theobroma cacao L.), SCA 6 dan DRC 15, tahan penyakit pembuluh kayu. (Yield performance of cocoa clones (Theobroma cacao L.), SCA 6 and DRC 15 which show resistance to vascular-streak dieback.) Pelita Perkebunan (Coffee and Cocoa Res J), 25:76–87Google Scholar
  131. Swisscontact (2016) Annual report 2015. Sustainable Cocoa production program Indonesia. The Swiss Foundation for Technical Cooperation, Indonesia, p34Google Scholar
  132. Tahi GM, N’Goran JAK, Pokou ND, Lachenaud P, Eskes AB (2008) Current status of planting materials in Côte d’Ivoire. In: Proceeding of CFC/ICCO/Bioversity project workshop on collaborative and farmer participatory approaches in Cocoa breeding in Africa held, Abidjan, Cote d’Ivoire, 18–22 February 2008Google Scholar
  133. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677PubMedCrossRefGoogle Scholar
  134. Tondoh JE, Nguessan Kouamé F, Martinez Guéi A et al (2015) Ecological changes induced by full-sun cocoa farming in C??te d’Ivoire. Glob Ecol Conserv 3:575–595CrossRefGoogle Scholar
  135. Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity: ecosystem service management. Ecol Lett 8:857–874Google Scholar
  136. Tscharntke T, Sekercioglu CH, Dietsch TV, Sodhi NS, Hoehn P, Tylianakis JM (2008) Landscape constraints on functional diversity of birds and insects in tropical agroecosystems. Ecology 89(4):944–951PubMedCrossRefGoogle Scholar
  137. Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D, Holscher D, Juhrbandt J, Kessler M, Perfecto I, Scherber C, Schroth G, Veldkamp E, Wanger TC (2011) Multifunctional shade-tree management in tropical agroforestry landscapes – a review. J Appl Ecol 48:619–629CrossRefGoogle Scholar
  138. Utomo B, Prawoto AA, Bonnet S, Bangviwat A, Gheewala S (2016) Environmental performance of cocoa production from monoculture and agroforestry systems in Indonesia. J Clean Prod 134(Part B):583–591CrossRefGoogle Scholar
  139. Vaast P, Somarriba E (2014) Trade-offs between crop intensification and ecosystem services: the role of agroforestry in cocoa cultivation. Agrofor Syst 88(6):947–956CrossRefGoogle Scholar
  140. Van Bael SA, Bichier P, Ochoa I, Greenberg R (2007) Bird diversity in cacao farms and forest fragments of western Panama. Biodivers Conserv 16(8):2245–2256CrossRefGoogle Scholar
  141. Van der Wolf J, Jassogne L, Gram G, Vaast P (2016) Turning local knowledge on agroforestry into a online decision-support tool for tree selection in smallholders’ farms. Exp Agric:1–17.
  142. Van Vliet JA, Slingerland M, Giller KE (2015) Mineral nutrition of cocoa. a review. Wageningen University and Research Centre, Wageningen, 57 ppGoogle Scholar
  143. Vaughan C, Ramírez O, Herrera G, Guries R (2007) Spatial ecology and conservation of two sloth species in cacao landscape in limón, Costa Rica. Biodivers Conserv 16(8):2293–2310CrossRefGoogle Scholar
  144. Vebrová H, Lojka B, Husband TP, Chuspe Zans ME, Van Damme P, Rollo A, Kalousová M (2014) Tree diversity in cacao agroforests in San Alejandro, Peruvian Amazon. Agrofor Syst 88(6):1101–1115CrossRefGoogle Scholar
  145. Vernon AJ (1967) New developments in cocoa shade studies in Ghana. J Sci Food Agric 18(2):44–48CrossRefGoogle Scholar
  146. Wessel M (1987) Shade and nutrition. In: Wood GAR, Lass RA (eds) Cacao, pp 166–194Google Scholar
  147. Wood GAR, Lass RA (2001) Cocoa. 4th edition. Wiley, Chichester, p 620Google Scholar
  148. Young A (1990) Agroforestry, environment and sustainability. Outlook Agric 19(3):155–160CrossRefGoogle Scholar
  149. Zaia FC, Da Gama-Rodrigues AC, Da Gama-Rodrigues EF, Machado RCR (2008) Fósforo orgânico em solos sob agrossistemas de cacau. Rev Bras Cienc do Solo 32(5):1987–1995CrossRefGoogle Scholar
  150. Zermeño-Hernández I, Méndez-Toribio M, Siebe C et al (2015) Ecological disturbance regimes caused by agricultural land uses and their effects on tropical forest regeneration. Appl Veg Sci 18(3):443–455CrossRefGoogle Scholar
  151. Zermeño-Hernández I, Pingarroni A, Martínez-Ramos M (2016) Agricultural land-use diversity and forest regeneration potential in human- modified tropical landscapes. Agric Ecosyst Environ 230:210–220CrossRefGoogle Scholar
  152. Zhang D, Motilal L (2016) Origin, dispersal, and current global distribution of cacao genetic diversity. In: Bailey BA, Meinhardt LW (eds) Cacao diseases, a history of old enemies and new encounters. Springer, Cham, pp 3–31Google Scholar
  153. Zhang DP, Arevalo-Gardini E, Mischke S, Zuniga-Cernades L, Barreto-Chavez A, Adriazola del Aguila J (2006) Genetic diversity and structure of managed and semi-natural populations of cacao (Theobroma cacao) in the Huallaga and Ucayali valleys of Peru. Ann Bot 98(3):647–655PubMedPubMedCentralCrossRefGoogle Scholar
  154. Zhang DP, Figueira A, Motilal L, Lachenaud P, Meinhardt LW (2011) Theobroma. In: Kole C (ed) Wild crop relatives: genomic and breeding resources: plantation and ornamental crops. Springer, Berlin, pp 277–296CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • B. Lojka
    • 1
  • L. Pawera
    • 1
  • M. Kalousová
    • 1
    • 2
  • L. Bortl
    • 1
    • 2
    • 3
  • V. Verner
    • 1
  • J. Houška
    • 4
    • 5
    • 6
  • W. Vanhove
    • 7
  • P. Van Damme
    • 1
    • 7
    • 8
  1. 1.Faculty of Tropical AgriSciencesCzech University of Life Sciences PraguePrague 6 SuchdolCzech Republic
  2. 2.Students for the Living Amazon o. p. sPragueCzech Republic
  3. 3.Prague Botanical GardenPrague 7 TrojaCzech Republic
  4. 4.Institute of Botany, Czech Academy of SciencePrůhoniceCzech Republic
  5. 5.Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life Sciences PraguePrague 6 SuchdolCzech Republic
  6. 6.Faculty of Forestry and Wood TechnologyMendel University in BrnoBrnoCzech Republic
  7. 7.Laboratory of Tropical and Subtropical Agriculture and EthnobotanyGhent UniversityGhentBelgium
  8. 8.World Agroforestry Centre, United Nations AvenueGigiri, NairobiKenya

Personalised recommendations