Skip to main content

Evolution of Agroforestry as a Modern Science

  • Chapter
  • First Online:

Abstract

Agroforestry is as old as agriculture itself. Many of the anecdotal agroforestry practices, which are time tested and evolved through traditional indigenous knowledge, are still being followed in different agroecological zones. The traditional knowledge and the underlying ecological principles concerning indigenous agroforestry systems around the world have been successfully used in designing the improved systems. Many of them such as improved fallows, homegardens, and park systems have evolved as modern agroforestry systems. During past four decades, agroforestry has come of age and begun to attract the attention of the international scientific community, primarily as a means for sustaining agricultural productivity in marginal lands and solving the second-generation problems such as secondary salinization due to waterlogging and contamination of water resources due to the use of excess nitrogen fertilizers and pesticides. Research efforts have shown that most of the degraded areas including saline, waterlogged, and perturbation ecologies like mine spoils and coastal degraded mangrove areas can be made productive by adopting suitable agroforestry techniques involving highly remunerative components such as plantation-based farming systems, high-value medicinal and aromatic plants, livestock, fishery, poultry, forest and fruit trees, and vegetables. New concepts such as integrated farming systems and urban and peri-urban agroforestry have emerged. Consequently, the knowledge base of agroforestry is being expanded at a rapid pace as illustrated by the increasing number and quality of scientific publications of various forms on different aspects of agroforestry. It is both a challenge and an opportunity to scientific community working in this interdisciplinary field. In order to prepare themselves better for facing future challenges and seizing the opportunities, scientists need access to synthesized information and develop technologies to assess the environmental benefits we get from different agroforestry services. The global community is still only in the beginning phase to recognize the potential benefits of many underexploited systems to address the most intractable land management problems of the twenty-first century, such as food and nutrient security, climate change mitigation and adaptation, biodiversity conservation, and rehabilitation of degraded ecosystems. As we move forward to vigorously exploit these potential benefits, we will witness the involvement of agroforestry and its progress for solving these problems and be able to ensure food and environmental security at global level.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdullah M, Akram M, Khan WA, Davidson NJ (1993) Selecting halophytic shrubs for the Cholistan desert. In: Davidson N, Galloway R (eds) Productive use of saline land. ACIAR proceedings No. 42. Australian Centre for International Agricultural Research, Canberra, pp 45–48

    Google Scholar 

  • Abebe T, Wiersum KF, Bongers F (2010) Special and temporal variation in crop diversity in agroforestry homegardens of southern Ethiopia. Agrofor Syst 78:309–322

    Article  Google Scholar 

  • Agelet A, Bonet MA, Valles J (2000) Homegardens and their roles as a main source of medicinal plants in mountain region Catalonian (Iberian peninsula). Econ Bot 54:295–309

    Article  Google Scholar 

  • Aggarwal RK (1980) Physico-chemical status of soil under Khejri (Prosopis cineraria Linn.) In: Mann HS, Saxena SK (eds) Khejri (Prosopis cineraria) in the Indian desert. Central Arid Zone Research Institute, Jodhpur, pp 32–37

    Google Scholar 

  • Ahmad R, Ismail S (1993a) Provenance trials in Pakistan: a synthesis. In: Davidson N, Galloway R (eds) Productive use of saline land. ACIAR proceedings No. 42. Australian Centre for International Agricultural Research, Canberra, pp 62–65

    Google Scholar 

  • Ahmad R, Ismail S (1993b) Studies on selection of salt-tolerant plants for food, fodder and fuel from world Flora. In: Lieth H, Al Masoom AA (eds) Towards the rational use of high salinity tolerant plants (Vol 2): agriculture and forestry under marginal soil water conditions, Tasks for vegetation science 28. Kluwer Academic, Dordrecht, pp 295–304

    Chapter  Google Scholar 

  • Ahmad R, Ismail S, Khan D (1987) Saline agriculture at coastal sandy belt. Final research report of coordinated research program on saline agriculture. Karachi University, PARC, Karachi, p 183

    Google Scholar 

  • Akinbamijo Y (2004) Urban fodder forests in the Gambia. Urban Agric Mag 13(2004):20

    Google Scholar 

  • Al Muzaini S (2003) Environmental measures to control sand movement in Kuwait. In: Alsharhan AS, Wood WW, Goudie AS, Fowler A, Abdellatif EM (eds) Desertification in the third millennium. Swets & Zeitlinger Publishers, Lisse, pp 309–313

    Chapter  Google Scholar 

  • Alam MS, Masum KM (2005) Status of homestead biodiversity in the offshore island of Bangladesh. Res J Agric Biol Sci 1(3):266–253

    Google Scholar 

  • Alexander TG, Sobhana KM, Balagopalan MMV (1980) Taungya in relation to soil properties, soil degradation and soil management, Research report 4. Kerala Forest Research Institute, Peechi

    Google Scholar 

  • Amadalo B, Jama B, Niang A, Noordin Q, Nyasimi M, Place F, Franzel S, Beniest J (2003) Improved fallows for western Kenya: an extensionguideline. World Agroforestry Centre (ICRAF), Nairobi, p 57

    Google Scholar 

  • Aslam Z, Mujtab M, Alshtar J, Waheed R, Malik KA, Naqvi M (1993) Biological methods for economically utilising salt-affected soils in Pakistan. In: Davidson N, Galloway R (eds) Productive use of saline land, ACIAR proceedings no. 12. Australian Centre for International Agricultural Research, Canberra, pp 29–31

    Google Scholar 

  • Atul, Punam, Khosla PK (1994) Production potential of traditional agroforestry systems in mid-hills of Himachal Himalayas. In: Singh P, Pathak PS, Roy MM (eds) Agroforestry systems for sustainable land use. Oxford & IBH Publication Co., New Delhi, pp 211–227

    Google Scholar 

  • Bai ZG, Dent DL, Olsson L, Schaepman ME (2008) Global assessment of land degradation and improvement. I. Identification of remote sensing. Report 2008/01, ISRIC-World Soil Information, Wageningen

    Google Scholar 

  • Bambo SK, Nowak J, Blount AR, Long AJ, Osiecka A (2009) Soil nitrate leaching in silvopastures compared with open pasture and pine plantation. J Environ Qual 38:1870–1877

    Article  CAS  PubMed  Google Scholar 

  • Barrett-Lennard EG (2003) Saltland pastures in Australia-A practice guide. Department of Agriculture, State of Western Australia, CSIRO, CRC for Plant-based Management of Dry Salinity in Australia, p 176

    Google Scholar 

  • Beaudette C, Breadley RL, Whalen J, McVetty PBE, Vessey K, Smith DL (2010) Tree-based intercropping does not compromise canola (Brassica Napus L.) seed oil yield and reduces soil nitrous oxide emissions. Agric Ecosyst Environ 139:33–39

    Article  CAS  Google Scholar 

  • Bene JG, Beall HW, Cote A (1977) Trees, food and people. IDRC, Ottawa

    Google Scholar 

  • Bhardwaj KKR, Dev SP (1985) Production and decomposition of Sesbania cannabina (Retz.) Pers. in relation to its effect on the yield of wetland rice. Trop Agric 62:233–336

    Google Scholar 

  • Bhojvaid PP, Timmer VR (1998) Soil dynamics in an age sequence of Prosopis juliflora planted for sodic soil restoration in India. For Ecol Manag 106(2–3):181–193

    Article  Google Scholar 

  • Birkes F, Colding J, Folke C (2000) Rediscovery of traditional ecological knowledge as adaptive management. Ecol Appl 10:1251–1262

    Article  Google Scholar 

  • Black GM, Somnasang P, Thamathawan S, Newman JM (1996) Cultivating continuity and creating change: women’s homegarden practices in northeastern Thailand. Multi-cultural considerations from cropping to consumption. Agric Hum Values 13:3–11

    Article  Google Scholar 

  • Blanckaert IRL, Swennenb M, Paredes Floresa R, Rosas Lopeza R, Lira Saadea R (2004) Floristic composition, plant uses and management practices in homegardens of SanRafael Coxcatian, Valy of Tehuacian-Cuicatlian, Mexico. J Arid Environ 57:39–62

    Article  Google Scholar 

  • Blanford HR (1958) Highlights of one hundred years of forestry in Burma. Empire For Rev 37(1):33–42

    Google Scholar 

  • Boffa JM (1999) Agroforestry parklands in sub Saharan Africa. FAO Conservation Guide 34. Food and Agriculture Organization, Rome

    Google Scholar 

  • Boonkrid SA, Fernandes ECM, Nair PKR (1984) Forest villages: an agroforestry approach to rehabilitating forest land degraded by shifting cultivation in Thailand. Agrofor Syst 2:87–102

    Article  Google Scholar 

  • Borlaug NE, Dowswell CR (1988) World revolution in agriculture. 1988 Britannica book of the year. Encyclopedia Britannica, Inc, Chicago, pp 5–14

    Google Scholar 

  • Borthakur DN (1992) Agriculture of the north eastern region with special reference to hill agriculture. Beece Prakashan, Guwahati

    Google Scholar 

  • Bortl L (2011) Adoption and socioeconomic evaluation of multistrata agroforestry systems in the Peruvian Amazon. MSc Thesis Czech University of Life Sciences in Pragua, Czech Republic, p 66

    Google Scholar 

  • Boyala J, Sanou J, Teklehaimanot Z, Kalinganire A, Ouedraogo SJ (2014) These systems reflect the ecological knowledge of the farmers of such risk prone environments. Curr Opin Environ Sustain 6:28–34

    Article  Google Scholar 

  • Braatz S, Kandiah A (1998) The use of municipal wastewater for forest and tree irrigation. FAO corporate document repository, Unasylva No. 185-Forest influences. http://www.fao.org/docrep/w0312E/w0312e09.htm

  • Bridges EM, Oldeman LR (1999) Global assessment of human-induced soil degradation. Arid Soil Res Rehab 13:319–325

    Article  Google Scholar 

  • Buresh RJ, Cooper PJM (1999) The science and practice of short-term improved fallows: symposium synthesis and recommendations. Agrofor Syst 47:345–356

    Article  Google Scholar 

  • Chamshama SAO, Monela GC, Sekiete KEA, Persson A (1992) Suitability of the taungya system at North Kilimanjaro forest plantation, Tanzania. Agrofor Syst 17(1):1–11

    Article  Google Scholar 

  • Chaturvedi OP, Kaushal R, JMS T, Prandiyal AK, Panwar P (2014) Agroforestry for wasteland rehabilitation: mined, ravine, and degraded watershed areas. In: Dagar JC, Singh AK, Arunachalam A (eds) Agroforestry systems in India: livelihood security and ecosystem services, Advances in agroforestry, vol 10. Springer, Dordrecht, pp 233–272

    Chapter  Google Scholar 

  • Conklin HC (1957) Hununoo agriculture FAO forestry development paper No.12. Rome, Italy

    Google Scholar 

  • Crutzen PJ, Andrea MO (1990) Biomass burning in the tropics: impact on pheric chemistry and biogeographical cycles. Science 250:1669–1678

    Article  CAS  PubMed  Google Scholar 

  • CSIRO (1995) Effluent irrigated plantations: design and management, CSIRO technical paper no. 2. CSIRO, Canberra

    Google Scholar 

  • Dagar JC (1982) Some ecological aspects of mangrove vegetation of Andaman and Nicobar Island. Sylvatrop, Philippines For Res J 7:177–216

    Google Scholar 

  • Dagar JC (1995) Agroforestry systems for the Andaman & Nicobar Islands. Int Tree Crops J 8:107–128

    Article  Google Scholar 

  • Dagar JC (2003) Biodiversity of Indian saline habitats and management & utilization of high salinity tolerant plants with industrial application for rehabilitation of saline areas. In: Alsharhan AS, Wood WW, Goudie AS, Fowler A, Abdellatif EM (eds) Desertification in the third millennium. Swets & Zeitlinger Publishers, Lisse, pp 151–172

    Chapter  Google Scholar 

  • Dagar JC (2008) Indian mangroves: status, management and their plausible benefits for livelihood security. J Indian Soc Coast Agric Res 26(2):121–128

    Google Scholar 

  • Dagar JC (2012) Utilization of degraded lands/habitats and poor quality water for livelihood security and mitigating climate change. Indian J Agrofor 14(1):1–16

    Google Scholar 

  • Dagar JC (2014) Greening salty and waterlogged lands through agroforestry systems for livelihood security and better environment. In: Dagar JC, Singh AK, Arunachalam A (eds) Agroforestry systems in India: livelihood security & ecosystem services, Advances in agroforestry 10. Springer, New York, pp 273–332

    Chapter  Google Scholar 

  • Dagar JC (2015) Agroforestry for restoration, conservation and resilience of waste/degraded lands: challenges and opportunities. In: Dhyani SK, Newaj R, Alam B, Dev I (eds) Agroforestry: present status and way forward. Biotech Books, New Delhi, pp 323–362

    Google Scholar 

  • Dagar JC, Gupta S (2016) Agroforestry: potentials for rehabilitation of degraded lands, constraints and the way forward. In: Dagar JC, Tewari JC (eds) Agroforestry research developments. Nova Publishers, New York, pp 47–98

    Google Scholar 

  • Dagar JC, Minhas PS (eds) (2016) Agroforestry for management of waterlogged saline soils and poor-quality waters, Advances in agroforestry, vol 13. Springer, Dordrecht, p 210

    Google Scholar 

  • Dagar JC, Pathak PS (2005) Grassland dynamics and their management. Range Manag Agrofor 26(1):7–31

    Google Scholar 

  • Dagar JC, Singh AK (eds) (2017) Ravine lands: greening for livelihood and environmental security. Springer (in press)

    Google Scholar 

  • Dagar JC, Tewari JC (eds) (2016a) Agroforestry research developments. Nova Publishers, New York, p 578

    Google Scholar 

  • Dagar JC, Tewari JC (2016b) Agroforestry research developments: anecdotal to modern science. In: Dagar JC, Tewari JC (eds) Agroforestry research developments. Nova Publishers, New York, pp 1–45

    Google Scholar 

  • Dagar JC, Mongia AD, Bandyopadhyaya AK (1991) Mangrooves of Andaman and Nicobar Islands. Oxford/IBH Publishing Co. Pvt. Ltd., New Delhi, p 166

    Google Scholar 

  • Dagar JC, Singh NT, Mongia AD (1993) Characteristics of mangrove soils and vegetation of Bay Islands in India. In: Lieth H, Al Masoom A (eds) Towards the rational use of high salinity tolerant plants, vol 1. Kluwer Academic Publishers, Dordrecht, pp 59–80

    Chapter  Google Scholar 

  • Dagar JC, Sharma HB, Shukla YK (2001a) Raised and sunken bed technique for agroforestry on alkali soils of northwest India. Land Degrad Dev 12:107–118

    Article  Google Scholar 

  • Dagar JC, Singh G, Singh NT (2001b) Evaluation of forest and fruit trees used for rehabilitation of semiarid alkali soils in India. Arid Land Res Manag 15:115–133

    Article  CAS  Google Scholar 

  • Dagar JC, Tomar OS, Minhas PS, Singh G, Jeet-Ram (2008) Dryland biosaline agriculture -Hisar experience, Techanical bulletin 6. CSSRI, Karnal, p 28

    Google Scholar 

  • Dagar JC, Yadav RK, Ahamad S (2012) Euphorbia antisyphilitica: a potential petro-crop for degraded calcareous soils and saline water irrigation in dry regions of India. J Soil Salinity & Water Quality 4(2):86–91

    Google Scholar 

  • Dagar JC, Tomar OS, Minhas PS, Kumar M (2013) Lemongrass (Cymbopogon flexuosus) productivity as affected by salinity of irrigation water, planting method and fertilizer doses on degraded calcareous soil in a semi-arid region of northwest India. Indian J Agric Sci 83(7):734–738

    Google Scholar 

  • Dagar JC, Pandey CB, Chaturvedi CS (2014a) Agroforestry: a way forward for sustaining fragile coastal and island agro-ecosystems. In: Dagar JC, Singh AK, Arunachalam A (eds) Agroforestry systems in India: livelihood security & ecosystem services, Advances in agroforestry, vol 10, pp 185–232

    Chapter  Google Scholar 

  • Dagar JC, Singh AK, Arunachalam A (eds) (2014b) Agroforestry systems in India: livelihood security and ecosystem services, Advances in agroforestry, vol 10. Springer, Dordrecht, p 400

    Google Scholar 

  • Dagar JC, Yadav RK, Dar SR, Ahamad S (2015) Liquorice (Glycyrrhiza glabra): a potential salt-tolerant, highly remunerative medicinal crop for remediation of alkali soils. Curr Sci 108:1683–1687

    Google Scholar 

  • Dagar JC, Lal K, Jeet Ram, Mukesh-Kumar, Chaudhari SK, Yadav RK, Sharif-Ahamad, Singh G, Amarinder K (2016a) Eucalyptus geometery in agroforestry on waterlogged saline soils influences plant and soil traits in north-West India. Agric Ecosyst Environ 233:33–42

    Article  CAS  Google Scholar 

  • Dagar JC, Sharma PC, Sharma DK, Singh AK (eds) (2016b) Innovative saline agriculture. Springer, Dordrecht, p 519

    Google Scholar 

  • Dagar JC, Yadav RK, Minhas PS, Tomar OS, Gajender (2016c) Fruit-based agroforestry systems for saline water irrigated semi-arid hyperthermic camborthids regions of north-west India. Agrofor Syst. https://doi.org/10.1007/s10457-015-9889-4

  • Das DC, Kaul RN (1992) Greening wastelands through wastewater. National Wasteland Development Board, New Delhi

    Google Scholar 

  • De Clerck FAJ, Negreros Castillo P (2000) Plant species of traditional Mayan homegardens of Mexico as analogs for multistrata agroforests. Agrofor Syst 48:303–317

    Article  Google Scholar 

  • Dhanya B, Sathish BN, Viswanath S, Purushothaman S (2014) Ecosystem services of native trees: experiences from twotraditional agroforestry systems in Karnataka, southern India. Int J Biodivers Sci Ecosyst Serv Manag 10:101–111

    Article  Google Scholar 

  • Dhyani SK, Chauhan DS, Kumar D, Kushwaha RV, Lepcha ST (1996) Sericulyure based agroforestry systems for hilly areas of north-east India. Agrofor Syst 34:1–12

    Article  Google Scholar 

  • Dhyani SK, Samra JS, Ajit, Handa AK, Uma (2007) Forestry to support increased agricultural production: focus on employment generation and rural development. Agric Econ Res Rev 26(2):179–202

    Google Scholar 

  • Dregne HE, Nan-Ting C (1992) Global desertification dimensions and costs. In: Dregne HE (ed) Degradation andrestoration of arid lands, International center for arid and semiarid land studies. Texas Tech University, Lubbock, pp 249–282

    Google Scholar 

  • Dudley N, Stolton S (2003) Running pure: the importance of forest protected areas to drinking water. A research report for the World Bank/WWF alliance for forest conservation and sustainable use. Washington, USA

    Google Scholar 

  • Duncan M, Baker T, Wall G (1998) Wastewater irrigated tree plantations: productivity and sustainability. Paperpresented in 61st annual water industry engineers and operators’ conference civic centre-Shepparton, 2–3 Sept 1998, pp 18–26

    Google Scholar 

  • Ebbs SD, Lasat MM, Brady DJ, Cornish J, Gordon R, Kochian IV (1997) Phytoextraction of cadmium andzinc from a ontaminated soil. J Environ Qual 26(5):1424–1430

    Article  CAS  Google Scholar 

  • Elevitch CR (ed) (2007) Traditional trees of Pacific Islands: their culture, environment, and use. Permanent Agriculture Resources, Holualoa, p 800

    Google Scholar 

  • Elevitch CR (ed) (2011) Specialty crops for Pacific Islands. Permanent Agriculture Resources, Holualoa, p 558

    Google Scholar 

  • FAO (1976) Forests for research and development. FAO, Rome

    Google Scholar 

  • FAO (1982) Tropical forest resources. Food and Agricultural Organization (FAO), Rome

    Google Scholar 

  • FAO (1990) List of plant names in agroforestry plot of Mr Wibul Khemchalerm the village head of BanHuai Hi, Tambon Ladkrating, Amphoe Sonamchaikhet, Chachoengsao Province, FAO and Bangkok, Thailand

    Google Scholar 

  • FAO (1996) Our land our future. Food and Agriculture Organization/United Nations Environment Programme, Rome/Nairobi

    Google Scholar 

  • FAO (2003) State of the world’s forests 2003. FAO, Rome

    Google Scholar 

  • FAO (2004) Information note and FOWECA update on the forestry outlook study in West and Central Asia. FAO, Rome

    Google Scholar 

  • FAO (2005) State of the world’s forests 2005. FAO, Rome

    Google Scholar 

  • FAO (2011) The state of the world’s land and water resources for food and agriculture (SOLAW) – managing systems at risk. Food and Agriculture Organization of United Nations, Rome

    Google Scholar 

  • FAO/AGL (2000) Extent and causes of salt-affected soils in participating countries. FAO/AGL-Global network on integrated soil management for sustainable use of salt-affected lands. http://www.fao.org/ag/agl/agll/spush/topic2.htm

  • Faye MD, Weber JC, Mounkoro B, Dakouo JM (2010) Contribution of parkland trees to village livelihood: a case study from Mali. Dev Pract 20:428–434

    Article  Google Scholar 

  • Faye MD, Weber JC, Abasse TA, Boureima M, Larwanou M, Bationo AB, Diallo BO, Sigue H, Dakouo JM, Samake O, Sonogo DD (2011) Farmers’preferences for tree functions and species in the west African Sahel. For Tree Livelihoods 20:113–116

    Article  Google Scholar 

  • Forde DC (1937) Land and labor in a Cross River village. Geogr J XV(1):24. (cited by Nair 1993)

    Article  Google Scholar 

  • Franzel S, Coe R, Cooper P, Place F, Scherr SJ (2001) Assessing the adoption potential of agroforestry practices in sub-Saharan Africa. Agrofor Syst 69(1–2):37–62

    Article  Google Scholar 

  • FSI (1997) State of forest report. Forest Survey of India, Dehradun

    Google Scholar 

  • GACGC (1994) World in transition- the threat to soils. Annual report, German advisory council on global change. Economica Verlag/GmbH, Bonn

    Google Scholar 

  • Garrett HE, Rietveld WJ, Fisher RF (eds) (2000) North American agroforestry: an integrated science and practice. American Society of Agronomy, Madison

    Google Scholar 

  • Garrity D (2012) Agroforestry and the future of global land use. In: Nair PKR, Garrity D (eds) Agroforestry-the future of global land use, Advances in agroforestry, vol 9. Springer, Dordrecht, pp 21–30

    Chapter  Google Scholar 

  • Garrity DP, Akinnifesi FK, Ajoyi OC, Weldesemayat SG, Mowo JG, Kalinganire A, Larwanou M, Bayalo J (2010) Evergreen agriculture: a robust approach to sustainable food security in Africa. Food Sec 2(3):197–214

    Article  Google Scholar 

  • Gebauer J (2005) Plant species diversity of homegardens in el Obeid, Central Sudan. J Agric Rural Dev Trop Subtrop 106(2):97–103

    Google Scholar 

  • Ghosh BN (2010) Vegetative barriers for erosion control in western Himalayan region. Technology Brochure/CSWCRTI, Dehradun, p 8

    Google Scholar 

  • Gibbs HK, Salmon JM (2015) Mapping the world’s degraded lands. Appl Geogr 57:12–21

    Article  Google Scholar 

  • Glenn E, Pitelka PLF, Olsen MW (1992) The use of halophytes to sequester carbon. Water Air Soil Pollut 64:251–263

    Article  CAS  Google Scholar 

  • Gordon AM, Newman SM (eds) (1997) Temperate agroforestry systems. CAB International, Wallingford

    Google Scholar 

  • Grewal SS (1992) Watersheds management project, Relmajra (Punjab), Annual report, 1991–92. CSWCRTI, Dehra Dun, pp 142–143

    Google Scholar 

  • Gupta S, Dagar JC (2016a) Agroforestry for ecological restoration of salt-affected lands. In: Dagar JC, Sharma PC, Sharma DK, Singh AK (eds) Innovative saline agriculture. Springer, Dordrecht, pp 161–182

    Chapter  Google Scholar 

  • Gupta S, Dagar JC (2016b) Enhancing environmental services of salt-affected lands through agroforestry. In: Dagar JC, Tewari JC (eds) Agroforestry research developments. Nova Publishers, New York, pp 209–244

    Google Scholar 

  • Hailey L (1957) An African survey. Oxford University Press, Oxford

    Google Scholar 

  • Haokip D (2003) Shifting cultivation in Manipur – problems and prospects. In: Bhat BP, Bajarbaruah KM, Sharma YP, Ram P (eds) Approaches for increasing agricultural productivity in hill and mountain ecosystem. ICAR Research Complex for NEH Region, Umiam, pp 331–335

    Google Scholar 

  • Harper RJ, Smettem KRJ, Tomlinson RJ (2005) Using soil and climatic data to estimate the performance of trees, carbon sequestration and recharge potential at the catchment scale. Aust J Exp Agric 45:1389–1401

    Article  Google Scholar 

  • Harper RJ, Beck AC, Ritson P, Hill MJ, Mitchell CD, Barett DJ, Smetter KRJ, Mann SS (2007) The potential of greenhouse sink to underwrite improved land management. Ecol Eng 29:329–341

    Article  Google Scholar 

  • Hellin J, William LA, Cherrett I (1999) The Quezungual system: an indigenous agroforestry system from western Honduras. Agrofor Syst 46:229–237

    Article  Google Scholar 

  • Hemp C, Hemp A (2008) The Chugga homegardens on Kalimangaro, Tanzania. IHDP update2.2008. http://www.ihdp.unu.edu/file/get/7728. Accessed on 24 Nov 2015

  • Herzog F (1998) Streuobst: a traditional agroforestry system as a model for agroforestry development in temperate Europe. Agrofor Syst 42:61–80

    Article  Google Scholar 

  • Heuperman AF, Kapoor AS, Denecke HW (2002) Biodrainage: principles, experiences and applications, Intnl. Programme for technology & research in irrigation and drainage, IPTRID secretariat. FAO, Rome, p 78

    Google Scholar 

  • Hintsa M (2012) Diversity and management of plant species in homegardens agroforestry in Hintalo wejerat, Tigray, Northern Ethiopia. MSc Thesis, Univ of Hawassa, Wondo Genet College of Forestry, Ethiopia

    Google Scholar 

  • Hintsa M, Emiru B (2016) Dryland tropical home garden agroforestry for conservation of plant species diversity. In: Dagar JC, Tewari JC (eds) Agroforestry research developments. Nova Publishers, New York, pp 197–207

    Google Scholar 

  • ICRAF (2008) Transforming lives and landscapes, strategy 2008–2015. World Agroforestry Centre, Nairobi, p 51

    Google Scholar 

  • IFPRI (2012) Global food policy report 2011. International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • IIASTD (2009) Agriculture at a crossroads: global report, International assessment of agricultural knowledge, science and technology for development (IIASTD). Island Press, Washington, DC. http://www.unep.org/dewa/Assessments/Ecosystems/IAASTD/tabid/105853/Default.asp

    Google Scholar 

  • Jaradat AA (2003) Halophytes for sustainable farming systems in the Middle East. In: Alsharhan AS, Wood WW, Goudie AS, Fowler A, Abdellatif EM (eds) Desertification in the third millennium. Swets & Zeitlinger Publishers, Lisse, pp 187–204

    Chapter  Google Scholar 

  • Jeet Ram, Garg VK, Toky OP, Minhas PS, Tomar OS, Dagar JC, Kamra SK (2007) Bio-drainage potential of Eucalyptus tereticornis for reclamation of shallow water table areas in north-west India. Agrofor Syst 69:147–165

    Article  Google Scholar 

  • Jeet-Ram, Dagar JC, Khajanchi L, Singh G, Toky OP, Tanwar VS, Dar SR, Chauhan MK (2011) Bio-drainage to combat waterlogging, increase farm productivity and sequester carbon in canal command areas of northwest India. Curr Sci 100(11):1673–1680

    Google Scholar 

  • Jena SK, Sahoo N, Roy Chowdhury S, Mohanty RK, Kundu DK, Behera MS, Patil DU, Kumar A (2011) Reclamation of coastal waterlogged wasteland through biodrainage. J Indian Soc Coastal Agric Res 29(2):57–62

    Google Scholar 

  • Jernsletten JL, Klokov K (2002) Sustainable reindeer husbandry. Arctic Council/Centre for Saami studies, Trompso. http://www.reindeer-husbandry.uit.no/online/Final_Report.pdf

    Google Scholar 

  • Jodha NS (1995) Preface. In: Saxena NC, Ballabh V (eds) Farm forestry in South Asia. Sage Publications, New Delhi, p 393

    Google Scholar 

  • Jose S (2010) Agroforestry for ecosystem services and environmental benefits, Advances in agroforestry, vol 7. Springer, Dordrecht, p 264

    Google Scholar 

  • Jose S, Gold MA, Garett HE (2012) The future of temperate agroforestry in the United States. In: Nair PKR, Garrity D (eds) Agroforestry-the future of global land use, Advances in agroforestry, vol 9. Springer, Dordrecht, pp 217–246

    Chapter  Google Scholar 

  • Joshi PK, Jha AK, Wani SP, Joshi L, Shiyani RL (2005) Comprehensive assessment of watershed management in agriculture: meta-analysis to assess impact of watershed program and people’s participation, Research report 8. ICRISAT and Asia Development Bank, Colombo, p 21

    Google Scholar 

  • Joshy D (1997) Indigenous technical knowledge in Nepal. In: Pongsapich A, Lesile RN (eds) Indigenous technical knowledge for land management in Asia. International Board for Soil Research and Management, Bangkok, pp 45–61

    Google Scholar 

  • Juyal GP, Katiyar VS, Dhadwal KS, Joshie P, Arya RK (2007) Mined area rehabilitation in Himalaya- shastradhara experience. Central Soil and Water Conservation Research & Training Institute, Dehradun

    Google Scholar 

  • Kang BT, Wilson G (1987) The development of alley cropping as a promising agroforestry technology. In: Steppler HA, Nair PKR (eds) Agroforestry: a decade of development. ICRAF, Nairobi, pp 227–243

    Google Scholar 

  • Kang BT, Wilson GF, Sipkens L (1981) Alley cropping maize (Zea mays L) and leucaena (Leucaena leucocephala lam) in southern Nigeria. Plant Soil 63:165–179

    Article  Google Scholar 

  • Kang BT, Reynolds L, Atta-Krah AN (1990) Alley farming. Adv Agr 43:315–359

    Article  Google Scholar 

  • Kashyap SD, Dagar JC, Pant KS, Yewale (2014) Soil conservation and ecosystem stability: natural resource management through agroforestry in northwestern Himalayan region. In: Dagar JC, Singh AK, Arunachalam A (eds) Agroforestry systems in India: livelihood security & ecosystem services, Advances in agroforestry, vol 10. Springer, New York, pp 21–56

    Chapter  Google Scholar 

  • Kaur B, Gupta SR, Singh G (2002) Bioamelioration of a sodic soil by silvopastoral system in northwestern India. Agrofor Syst 54:13–20

    Article  Google Scholar 

  • Kehlenbeck K, Maas BL (2004) Crop diversity and classification of homegardens in Central Sulawesi, Indonesia. Agrofor Syst 63:53–62

    Article  Google Scholar 

  • Kessler JJ (1992) The influence of Karite (Vitellaria paradoxa) and nere (Parkia biglobsa) associated with crops in South Mali. Agrofor Syst 18:89–105

    Article  Google Scholar 

  • Khan SA (2003) Studies on sodic soils through agroforestry system for central plain zone of Uttar Pradesh, India. Paper in XII World Forestry Congress, Quebec City, Canada. http://www.fao.org/docrep/article/wfc/xii/1009-b5.htm

  • Khybri ML, Gupta RK, Ram S, Tomar HS (1992) Crop yields of rice and wheat grown in rotation with three tree species in the outer hills of Himalayas. Agrofor Sys 19:193–204

    Google Scholar 

  • King KFS (1968) Agri-silviculture. Bulletin No.1, Department of Forestry/University of Ibadan, Nigeria Forest

    Google Scholar 

  • King KFS (1979) Agroforestry. Agroforestry: proceedings of the 5th symposium on tropical agriculture. Royal Tropical Institute, Amsterdam, the Netherlands

    Google Scholar 

  • King KFS (1987) The history of agroforestry. In: Stepler HA, Nair PKR (eds) Agroforestry: a decade of development. ICRAF, Nairobi, pp 1–11

    Google Scholar 

  • Kitalyi A, Wambugu RO, Kimaro D (2013) FAO characterisation of global heritage agroforestry systems in Tanzania and Kenya. Agroforestry and development alternatives (AFOREDA), Tanzania. FAO, –Rome

    Google Scholar 

  • Konijnendijk CC (2003) A decade of urban forestry in Europe. Forest Policy Econ 5(3):173–186

    Article  Google Scholar 

  • Korwar GR (1992) Influence of cutting height of Leucaena hedgerows on alley cropped sorghum and pearl millet. Indian J Dryland Agrl Res Dev 7:57–60

    Google Scholar 

  • Korwar GR (1999) Alternate landuse systems: trees and bushes. In: Singh HP, Ramakrishna YS, Sharma KL, Venkateswarlu B (eds) Fifty years of dryland agriculture research in India. CRIDA, Hyderabad, pp 507–512

    Google Scholar 

  • Korwar GR, Prasad JVNS, Rajeshwara Rao G, Venkatesh G, Pratibha G, Venkateshwarlu B (2014) Agroforestry as a strategy for livelihood security in the rainfed areas: experiences and expectations. In: Dagar JC, Singh AK, Arunachalam A (eds) Agroforestry systems in India: livelihood security & ecosystem services, Advances in agroforestry, vol 10. Springer, New York, pp 117–154

    Chapter  Google Scholar 

  • Kumar BM (2008) Krishi Gita (Agricultural verses – trans) A treatise on indigenous farming practices with special reference to Malayalam Desam (Kerala). Asian Agri-History Foundation, Secunderabad, p 111

    Google Scholar 

  • Kumar BM, Kunhamu TK (eds) (2011) Quarter century of agroforestry research in Kerala: a compendium of research publication. Kerala Agriucltural University, Thrissur, p 404

    Google Scholar 

  • Kumar BM, Nair PKR (2004) The enigma of tropical homegardens. Agrofor Syst 61:135–152

    Google Scholar 

  • Kumar BM, Nair PKR (eds) (2006) Tropical homegardens: a time-tested example of sustainable agroforestry. Springer, Dordrecht, p 380

    Google Scholar 

  • Kumar YA, Reddy VM (2010) Effects of municipal sewage on the growth performance of Casuarina equisetifolia (Forst. & Forst.) on sandy soil of east coast at Kalapakkam (Tamil Nadu, India). Appl Ecol Environ Res 8(1):77–85

    Article  Google Scholar 

  • Kumar BM, Singh AK, Dhyani SK (2012) South Asian agroforestry: traditions, transformations and prospects. In: Nair PKR, Garrity D (eds) Agroforestry-the future of global land use, Advances in agroforestry, vol 9. Springer, Dordrecht, pp 359–390

    Chapter  Google Scholar 

  • Kwesiga FR, Franzel S, Place F, Phiri D, Simwanzac P (1999) Sesbania sesban improved fallows in eastern Zambia: their inception, development and farmer enthusiasm. Agrofor Syst 47:49–66

    Article  Google Scholar 

  • Kwesiga FR, Franzel S, Mafongoya P, Ajayi O, Phiri D, Katanga R, Kuntashula E, Place F, Chirwa T (2005) Improved fallows in eastern Zambia: history, farmer practice and impacts, EPT discussion paper 130. International Food Policy Research Institute (IFPRI), Washigton, DC, p 81. www.ifpri.org

    Google Scholar 

  • Lal K, Yadav RK, Kaur R, Bundela DS, Khan MI, Chaudhary M, Meena RL, Dar SR, Singh G (2013) Productivity, essential oil yield, and heavy metal accumulation in lemon grass (Cymbopogon flexuosus) under varied wastewater-groundwater irrigation. Ind Crop Prod 45:270–278

    Article  CAS  Google Scholar 

  • Lal K, Kaur R, Rosin KG, Patel N (2016) Low-cost remediation and on-farm management approaches for safe use of water in agriculture. In: Dagar JC, Sharma PC, Sharma DK, Singh AK (eds) Innovative saline agriculture. Springer, New Dehli, pp 265–276

    Chapter  Google Scholar 

  • Laquihon WA, Watson HR (1986) How to farm your hilly land without losing your soil. 2nd ed, (mimeo) Mindano Baptist rural life cent. Davao del Sur, Phillipines

    Google Scholar 

  • Leakey RRB (2012) Multifunctional agriculture and opportunities for agroforestry: implications of IAASTD. In: Nair PKR, Garrity D (eds) Agroforestry-the future of global land use, Advances in agroforestry, vol 9. Springer, Dordrecht, pp 203–216

    Chapter  Google Scholar 

  • Leakey RRB, Newton AC (1994) Domestication of “Cinderella”species as a start of a woody-plant revolution. In: Leakey RRB, Newton AC (eds) Tropical trees: the potential for domestication and rebuilding of forest resources. HMSO, London, pp 3–4

    Google Scholar 

  • Leakey RRB, Weber JC, Page T, Corneliuus JP, Akinnifesi FK, Roshetko JM, Tchoundjeu Z, Jamnadass R (2012) Tree domestication in agroforestry: progress in the second decade. In: Nair PKR, Garrity D (eds) Agroforestry-the future of global land use, Advances in agroforestry, vol 9. Springer, Dordrecht, pp 145–174

    Chapter  Google Scholar 

  • Lehmann J (2001) Subsoil root activity in tree-based cropping systems. Plant Soil 225(1):319–331

    Google Scholar 

  • Logan W (1906) Molabar mannual (2 Vols), 2nd edn. Asian Educational Services, Madras, p 772

    Google Scholar 

  • Lojka B, Bortl L, Ruiz RR, Banout J, Lojkova J, Polesny Z, Preininger D, Guerra JU, Verner V (2016) Multi-strata agroforestry as an alternative to slash-and-burn farming in the Peruvian Amazon. In: Dagar JC, Tewari JC (eds) Agroforestry research developments. Nova Publishers, New York, pp 383–398

    Google Scholar 

  • Lone MI, He Z-I, Peter JS, Xiao-Y (2008) Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J Zhejiang Univ SciB 9(3):210–220

    Article  CAS  Google Scholar 

  • Lundgren B (1978) Soil conditions and nutrient cycling under natural plantation forests in the Tanzanian highlands, Report on forest ecology and forest soils, 31. Swedish University of Agricultural Sciences, Uppsala

    Google Scholar 

  • Lundgren B (1982) Cited in editorial: what is agroforestry? Agrofor Syst 1:7–12

    Article  Google Scholar 

  • Lundgren B, Raintree JB (1982) Sustained agroforestry. In: Nestel B (ed) Agricultural research for development: potentials and challenges in Asia. ISNAR, The Hague, pp 37–49

    Google Scholar 

  • Maathai W (2012) Agroforestry, climate change and habitat protection. In: Nair PKR, Garrity D (eds) Agroforestry-the future of global land use, Advances in agroforestry, vol 9. Springer, Dordrecht, pp 3–5

    Chapter  Google Scholar 

  • Maffi L (2007) Biocultural diversity and sustainability. In: Pretty J, Ball A, Benton T, Guivant J, Lee DR, Orr D, Pfeffer M, Ward H (eds) The SAGE handbook of environment and society. Sage Publications, London

    Google Scholar 

  • Maithani BP (2005) Shifting cultivation in Northeast India: soil and water management imperative for food security in a changing climate. Curr Sci 101(9):1119

    Google Scholar 

  • Maiti S, Raju S (2004) Problems and prospects of medicinal and aromatic plants cultivated in the coastal ecosystems of India. J Indian Soc Coas Agric Res 22:185–190

    Google Scholar 

  • Mangalassery S, Dayal D, Meena SL, Ram B (2014) Carbon sequestration in agroforestry in pasture systems in arid northwestern India. Curr Sci 107:1290–1293

    CAS  Google Scholar 

  • Mann HS, Saxena SK (1980) Khejri (Prosopis cineraria) in the Indian desert: its role in agroforestry. CAZRI, Jodhpur

    Google Scholar 

  • Mateer (1883) Native life in Travancore. WH Allen, London, p 450

    Google Scholar 

  • Mathur BL (1995) Kana bundi indigenous method of controlling wind erosion. Honey Bee (12):7

    Google Scholar 

  • McNamara RS (1973) One hundred countries, two billion people. Praeger, New York; Maffi L (2007) Biocultural diversity and sustainability. In: Pretty J, Ball A, Benton T, Guivant J, Lee DR, Orr D, Pfeffer M, Ward H (eds) The SAGE handbook of environment and society. Sage publications, London

    Google Scholar 

  • Mertz O (2009) Trends in shifting cultivation and the REDD mechanism. Curr Opt Environ Sustain 1:156–160

    Article  Google Scholar 

  • Metzner JK (1982) Agriculture and population pressure in Sikka, Isle of Flores-a contribution to the stability of agricultural systems in the wet and dry tropics, Monograph No. 28. Australian National University, Canberra

    Google Scholar 

  • Miller RP, Nair PKR (2006) Indigenous agroforestry systems in Amazonia: from prehistory to today. Agrofor Syst 66:151–164

    Article  Google Scholar 

  • Minang PA, van Noordwijk M, Swallow BM (2012) High-carbon-stock rural-development pathways in Asia and Africa: improved land management for climate change mitigation. In: Nair PKR, Garrity D (eds) Agroforestry-the future of global land use, Advances in agroforestry, vol 9. Springer, Dordrecht, pp 127–144

    Chapter  Google Scholar 

  • Minhas PS, Yadav RK, Lal K, Chaturvedi RK (2015) Effect of long-term irrigation with wastewater on growth, biomass production and water use by eucalyptus (Eucalyptus tereticornis Sm.) planted at variable stocking density. Agric Water Manag 152:151–160

    Article  Google Scholar 

  • Mishra A, Sharma SD, Pandey R, Mishra L (2004) Amelioration of highly alkali soil by trees in northern India. Soil Use Manag 20:325–332

    Article  Google Scholar 

  • Molebatsi LY, Siebert SJ, Cilliers SS, Lubbe CS, Davoren E (2010) The Tswana tshimo: a homegarden system of useful plants with a particular layout and function. Afr J Agric Res 5(21):2952–2963

    Google Scholar 

  • Moreno G, Obrador JJ, Garcia A (2007) Impact of evergreen oaks on soil fertility and crop production in intercropped dehesas. Agric Ecosyst Environ 119(3–4):270–280

    Article  CAS  Google Scholar 

  • Mosquera-Losada MR, Moreno G, Pardini A, McAdam JH, Papanastasis V, Burgess PJ, Lamersdorf N, Castro M, Liagre F, Rigueiro-Rodriguez A (2012) Past, present and future of agroforestry systems in Europe. In: Nair PKR, Garrity D (eds) Agroforestry-the future of global land use, Advances in agroforestry, vol 9. Springer, Dordrecht, pp 285–312

    Chapter  Google Scholar 

  • NAAS (2009) State of Indian agriculture. National Academy of Agricultural Sciences (NAAS), New Delhi, p 256

    Google Scholar 

  • NAAS (2015) Biodrainage: an ecofriendly tool for combating waterlogging, Policy paper 74. National Academy of Agricutural Sciences, New Delhi, p 28

    Google Scholar 

  • Nair PKR (1979) Intensive multiple cropping with coconuts in India. Verlag Paul Parey, Berlin/Hamburg

    Google Scholar 

  • Nair PKR (1983) Agroforestry with coconuts and other tropical plantation crops. In: Huxley PA (ed) Plant research and agroforestry. ICRAF, Nairobi, pp 79–102

    Google Scholar 

  • Nair PKR (1985) Classification of agroforestry systems. Agrofor Syst 3:97–128

    Article  Google Scholar 

  • Nair PKR (ed) (1989) Agroforestry systems in the tropics. Kluwer, Dordrecht

    Google Scholar 

  • Nair PKR (1993) An introduction to agroforestry. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Nair PKR (2012) Climate change mitigation and adaptation: a low hanging fruit of agroforestry. In: PKR N, Garrity DP (eds) Agroforestry: the future of global land use, Advances in agroforestry, vol 9. Springer, Dordrecht, pp 31–67

    Chapter  Google Scholar 

  • Nair PKR, Dagar JC (1991) An approach to developing methodologies for evaluating agroforestry systems in India. Agrofor Syst 16:55–81

    Article  Google Scholar 

  • Nair PKR, Garrity D (eds) (2012a) Agroforestry-the future of global land use, Advances in agroforestry, vol 9. Springer, Dordrecht, p 541

    Google Scholar 

  • Nair PKR, Garrity D (2012b) Agroforestry research and development: the way forward. In: PKR N, Garrity D (eds) Agroforestry-the future of global land use, Advances in agroforestry, vol 9. Springer, Dordrecht, pp 515–531

    Chapter  Google Scholar 

  • Nair MA, Sreedharan C (1986) Agroforestry systems in the homesteads of Kerala, southern India. Agrofor Syst 4:339–363

    Article  Google Scholar 

  • Nair PKR, Viswanath S, Lubina PA (2016) Cinderella agroforestry systems. Agrofor Syst. https://doi.org/10.1007/s10457-016-9966-3

  • Nerlich K, Graeff-Honninger S, Claupein W (2013) Agroforestry in Europe: a review of the disappearance of traditional systems and development of modern agroforestry practices, with emphasis on experiences in Germany. Agrofor Syst 87:475–492

    Article  Google Scholar 

  • Neumann CR, Hobbs TJ, Tucker M (2011) Carbon sequestration and biomass production rates from agroforestry in lower rainfall zones (300–650 mm) of South Australia: southern Murray-Darling Basin Region, Government of South Australia, through Department of Environment and Natural Resources. Adelaide & Future Farm Industries Cooperative Research Centre, 32 pp

    Google Scholar 

  • Nijsen M, Smeets E, Stehfest E, Vuuren DP (2012) An evaluation of the global potential of bioenergy production on degraded lands. GCB Bioenergy 4(2):130–147

    Article  Google Scholar 

  • Ojeniyi SO, Agbede O (1980) Effect of single crop agrisilviculture on soil analysis. Exp Agric 16:371–375

    Article  CAS  Google Scholar 

  • Ojeniyi SO, Agbede O, Faghenro JA (1980) Increasing food production in Nigeria:1 effects of agriculture on soil chemical properties. Soil Sci 130:76–81

    Article  Google Scholar 

  • Ojo GJA (1966) Yoruba culture. University of Ife/London Press, London

    Google Scholar 

  • Okafor JC, Fernandes ECM (1987) The compound farms ofsoutheastern Nigeria: a predominant agroforestry homegardensystem with crops and livestock. Agrofor Syst 5:153–168

    Article  Google Scholar 

  • Oldeman LR (1994) The global extent of soil degradation. In: Greenland DJ, Szabolcs I (eds) Soil resilience and sustainable land use. CAB International, Wallingford/Great Britain, pp 99–118

    Google Scholar 

  • Oldeman LR, Hakkeling RTA, Sombrock WG (1990) World map of the status of human-induced soil degradation. International Soil Reference and Information Centre, Wageningen

    Google Scholar 

  • Oluwadare OS (2014) Taungya farming-a strategy for sustainable land management and agricultural development in Nigeria. Adv For Lett (AFL) 3:16–22. http://www.afl-journal.org

    Google Scholar 

  • Omran M, Waly TM, Abd-Elmaim EM, El-Nashir BMB (1998) Effect of sewage irrigation on yield, tree components and heavy metals accumulation in naval Orange trees. Biol Wastes 23:7–24

    Google Scholar 

  • Osman M, Emminham WH, Sharrow SH (1998) Growth and yield of sorghum or cowpea in an agrisilviculture system in semi-arid India. Agrofor Syst 42(1):91–105

    Article  Google Scholar 

  • Padoch C, de Jong W (1987) Traditional agroforestry practicesof native and ribereno farmers in the lowland PeruvianAmazon. In: Gholz HL (ed) Agroforestry: realities, possibilitiesand potentials. Kluwer/Springer, Dordrecht, pp 179–194

    Google Scholar 

  • Pandey CB, Rai BR, Singh L, Singh A (2007) Homegardens of Andaman and Nicobar, India. Agric Syst 92:1–22

    Article  Google Scholar 

  • Papanastasis VP, Mantzanas K, Dini-Papanastasi O, Ispikoudis I (2009) Traditional agroforestry systems and their evolution in Greece. In: Rigueiro-Rodriguez A, McAdam J, Mosquera-Losada MR (eds) Agroforestry in Europe: current status and future prospects. Springer Science + Business Media BV, Dordrecht, pp 89–109

    Google Scholar 

  • Papendick RI, Sanchez PA, Triplett GB (eds) (1976) Multiple cropping, Special publication no. 27. Americal Soc of Agronomy, Madison

    Google Scholar 

  • Parera V (1989) Alley cropping. In: Kang BT, Reynolds L (eds) Alley farming in humid and sub-humid tropics. IDRC, Ottawa

    Google Scholar 

  • Parrotta JA, Trosper RL (eds) (2012) Traditional forest-related knowledge: sustaining communities, ecosystems and biocultural diversity. Springer, London

    Google Scholar 

  • Parthiban KT (2016) Industrial agroforestry: a successful value chin model in Tamil Nadu, India. In: Dagar JC, Tewari JC (eds) Agroforestry research developments. Nova Publishers, New York, pp 523–537

    Google Scholar 

  • Pathak PS, Dagar JC (2000) Traditional agroforestry sytems: an overview. In: Soni P, Srivastava AK (eds) Landmarks of botany in India. Suriya International Pub, Dehradun, pp 26–49

    Google Scholar 

  • Pathak PS, Dagar JC (2015) Indian grasslands and their management. In: Ghosh PK, Mahante SK, Singh JB, Pathak PS (eds) Greassland: a global resource perspective. Range management Society of India, Jhansi, pp 3–36

    Google Scholar 

  • Pathak PS, Gupta SK, Singh P (1995) IGFRI approaches: rehabilitation of degraded lands. Bulletin Indian Grassland and Fodder Research Institute, Jhansi, pp 1–23

    Google Scholar 

  • Pathak PS, Dagar JC, Kaushal R, Chaturvedi OP (2014) Agtoforestry inroads from the traditional two-crop systems in heartlands of the indo-Gangetic plains. In: Dagar JC, Singh AK, Arunachalam A (eds) Agroforestry systems in India: livelihood security and ecosystem services, Advances in agroforestry, vol 12. Springer, Dordrecht, pp 87–116

    Chapter  Google Scholar 

  • Peri L, Dube F, Varella AC (eds) (2016) Silvopastoral systems in southern South America, Advances in agroforestry, vol 12. Springer, Dordrecht

    Google Scholar 

  • Prajapati MC, Tiwari AK, Nambiar KTN, Singh JP, Malhotra BM, Sharda VN (1989) Effect of goat grazing on vegetation, runoff and soil loss in a stabilized watershed vis-à-vis animal growth. Indian J Soil Conserv 17(1):9–16

    Google Scholar 

  • Prasad RN, Singh KA (1994) Integrating land use management for eastern Himalayan agroecosystems. In: Singh P, Pathak PS, Roy MM (eds) Agroforestry system for sustainable land use. Oxford/IBH Publ Co., New Delhi, pp 228–236

    Google Scholar 

  • Pro Act (2008) The role of environmental management and eco-engineering in disaster risk reduction and climate change adaptation. ProAct Network, Nyon, Aug 2008. http://www.proactnetwork.org/proactwebsite/policyresearchtoolsguidance/environmental-management_in_drr-a-cca

  • Puri S, Nair PKR (2004) Agroforestry research for development in India: 25 years of experiences of a national program. Agrofor Syst 6:437–452

    Google Scholar 

  • Quadir M, Wichelns D, Sally IR, McCornick PG, Drechsel P, Bahri A, Minhas PS (2010) The challenges of wastewater irrigation in developing countries. Agric Water Manag 97:561–568

    Google Scholar 

  • Quadir M, Ahamad N, Qureshi RH, Ilyyas M (1995) Role of salt tolerant plants to reduce salinitation and sodification. In: Khan MA, Ungar IA (eds) Biology of salt tolerant plants. Department of Botany, University of Karachi, Karachi, pp 371–379

    Google Scholar 

  • Qureshi RH, Aslam M, Rafiq M (1993) Expansion in the use of forage halophytes in Pakistan. In: Davidson N, Galloway R (eds) Productive use of saline land, ACIAR proceedings no. 42. Australian Centre for International Agricultural Research, Canberra, pp 12–16

    Google Scholar 

  • Raghvan MS (1960) Genesis and history of the Kumari system of cultivation. Proceedings 9th Silviculture Conf 1956, Forestry Res. Insitute (FRI), Dehradun

    Google Scholar 

  • Rai P (2012) Sylvipastoral system for livestock production: performance of small ruminants. Indian J Agrofor 14(1):23–28

    Google Scholar 

  • Ramakrishnan PS (1992) Shifting agriculture and sustainable development: an interdisciplinary study from north eastern India, UNESCO MAB series. Parthenon Publ, Carnforth/Lanes/Paris. (Republished by Oxford Univ Press, New Delhi in 1993)

    Google Scholar 

  • Ram-Newaj CSB, Kumar D, Uthappa AR, Singh M, Sridhar KB (2016) Agroforestry research in India: relevance in livelihood and climate change. In: Dagar JC, Tewari JC (eds) Agroforestry research developments. Nova Publishers, New York, pp 327–359

    Google Scholar 

  • Randhawas MS (1980) A history of Indian agriculture: eighth to eighteenth century, vol 2. Indian Council of Agricultural Research, New Delhi, p 358

    Google Scholar 

  • Rao DLN (1998) Biological amelioration of salt-affected soils. In: Subba Rao NS, Donimergues YR (eds) Micobial interactions in agriculture and forestry, vol I. Oxford/IBH Publ. Co., New Delhi, pp 219–238

    Google Scholar 

  • Rao DLN, Ghai SK (1995) Predicting nitrogen fixation and N accumulation in field grown annual Sesbania spp. Proc Indian Natl Sci Acad (B) 61:57–62

    Google Scholar 

  • Rao MR, Ong CK, Pathak P, Sharma MM (1991) Productivity of annual cropping and agroforestry systems on a shallow Alfisols in semi-arid India. Agrofor Syst 15:51–63

    Article  Google Scholar 

  • Rashid A, Khattak JK, Khan MZ, Iqbal MJ, Akbar F, Khan P (1993) Selection of halophytic forage shrubs for the Peshawar Valley, Pakistan. In: Davidson N, Galloway R (eds) Productive use of saline land, ACIAR proceedings no. 42. ACIAR, Canberra, pp 56–61

    Google Scholar 

  • Raychaudhuri SP, Roy M (1993) Agriculture in ancient India. ICAR, New Delhi

    Google Scholar 

  • Rigueiro-Rodriguez A, JH MA, Mosquera-Losada MR (eds) (2008) Agroforestry in Europe, Advances in agroforestry, vol 8. Springer, Dordrecht, p 452

    Google Scholar 

  • Rossier C, Lake F (2014) Indigenous traditional ecological knowledge in agroforestry. Agroforestry Note 44, USDA National Agroforestry Center. http://nac.unl.edu

  • Roy Chowdhury S, Kumar A, Brahmanand PS, Ghosh S, Mohanty RK, Jena SK, Sahoo N, Panda GS (2011) Application of biodrainage for reclamation of waterlogged situations in deltaic Orissa, Research bulletin 53. Directorate of water Management, Bhubaneswar, p 32

    Google Scholar 

  • Saha R, Tomar JMS, Ghosh PK (2007) Evaluation and selection of multipurpose trees for comparing soil hydro-physical behavior under hilly ecosystem of north east India. Agrofor Syst 69:239–247

    Article  Google Scholar 

  • Sajjapongse A, Qing Z, Yibing C, Hongzhong W (2002) Development of sustainable agriculture on sloping lands in China. In: 12th ISCO conference, Bejing, China. pp 335–341

    Google Scholar 

  • Sanchez PA (1976) Properties and management of soils in the tropics. John Wiley, New York

    Google Scholar 

  • Sanchez PA (1999) Improved fallows come of age in the tropics. Agrofor Syst 47:3–12

    Article  Google Scholar 

  • Sato T, Manzoor Q, Sadahiro Y, Tsuneyoshi E, Zahoor A (2013) Global, regional, and country level need fordata on wastewater generation, treatment, and use. Agric Water Manag 130:1–13

    Article  Google Scholar 

  • Serrato EAS, Nepstad D, Walker R (1996) Upland agricultural and forestry development in the Amazon: sustainability, criticality and resilience. Ecol Econ 18:3–13

    Article  Google Scholar 

  • Shankarnarayan KA, Harsh LN, Kathju S (1987) Agroforestry in the arid zones of India. Agrofor Syst 5:69–88

    Article  Google Scholar 

  • Sharda VN, Venkateswarlu B (2007) Crop diversification and alternate land use systems in watershed management. In: Best-bet options for integrated watershed management-Proccedings of the comprehensive assessment of watershed programs in India, July 25–27, 2007. ICRISAT, Patancheru, pp 111–128

    Google Scholar 

  • Sharda VN, Juyal GP, Naik BS (2008) Watershed development in India: status and perspective. Allied Printers, Dehradun, p 219

    Google Scholar 

  • Sharma PD, Sarkar AK (2005) Managing acid soils for enhancing soil productivity. NRM Division/ICAR, New Delhi, p 22

    Google Scholar 

  • Sharma E, Sharma R, Singh KK, Sharma G (2000) A boon for mountain populations. Large cardamom farming in the Sikkim Himalayas. Mt Res Devel 20(2):108–111

    Article  Google Scholar 

  • Sharma G, Sharma R, Sharma E (2009) Traditional knowledge system in large cardamom farming: biophysical and management diversity in Indian mountainous regions. Indian J Tradit Knowl 8(1):17–22

    Google Scholar 

  • Shebbeare EO (1932) Sal Taungya in Bengal. Empire Rev 12(1):26

    Google Scholar 

  • Shiva V, Bandyopadhyay J, Jayal ND (1985) Afforestation in India: problems and strategies. Ambio 14(6):329–333

    Google Scholar 

  • Singh S (2004) Biological reclamation of degraded mined land a sustainability indicator. Environ News 10(1):1–3

    Google Scholar 

  • Singh KD (2016) System approach for enhancing synergy between farmers and industries in agroforestry. In: Dagar JC, Tewari JC (eds) Agroforestry research developments. Nova Publishers, New York, pp 539–544

    Google Scholar 

  • Singh G, Dagar JC (2005) Greening sodic lands: Bichhian model, Technical bulletin no.2/2005. CSSRI, Karnal, p 51

    Google Scholar 

  • Singh G, Gill HS (1992) Ameliorative effect of tree species on characteristics of sodic soils at Karnal. Indian J Agric Sci 62:142–146

    Google Scholar 

  • Singh KA, Rai R, Bhutia DL (1982) Large cardomon (Ammomum subulatum) plantation: an age old agroforestry system in eastern Himalayas. Agrofor Syst 1:241–257

    Google Scholar 

  • Singh M, Arrawatia ML, Tewari VP (1998) Agroforestry for sustainable development in arid zones of Rajasthan. Int Tree Crops J 9:203–212

    Article  Google Scholar 

  • Singh YP, Sharma DK, Singh G, Nayak AK, Mishra VK, Singh R (2008) Alternate land use management for sodic soils, CSSRI technical bull no. 2/2008. CSSRI, Karnal, p 16

    Google Scholar 

  • Singh AK, Arunachalam A, Ngachan SV, Mohapatra KP, Dagar JC (2014) From shifting cultivation to integrating farming: experience of agroforestry development in the northeastern Himalayan region. In: Dagar JC, Singh AK, Arunachalam A (eds) Agroforestry systems in India: livelihood security &ecosystem services, Advances in agroforestry, vol 10. Springer, New York, pp 57–86

    Chapter  Google Scholar 

  • Smalling EMA, Nandwa SM, Janssen BH (1997) Soil fertility in Africa is at stake. In: Buresh RJ, Sanchez PA, Calhaun F (eds) Replenishing soil fertility in Africa, SSSA special Publ a Madison WH 51. Soil Science Society of America, Madison, pp 47–61

    Google Scholar 

  • Soemarwoto O (1987) Homegardens: a traditional agroforestry system with a promising future. In: Steppler HA, Nair PKR (eds) Agroforestry: a decade of development. ICRAF, Nairobi, pp 157–172

    Google Scholar 

  • Soemarwoto O, Conway GR (1992) The Javanese Homegarden. J Farm Syst Res-Ext 2:95–118

    Google Scholar 

  • Somarriba E (1992) Revisiting the past: an essay on agroforestry definition. Agrofor Syst 19:233–240

    Article  Google Scholar 

  • Soni ML, Subbulakshmi V, Yadava ND, Tewari JC, Dagar JC (2016) Silvopastoral agroforestry systems: lifeline for dry regions. In: Dagar JC, Tewari JC (eds) Agroforestry research developments. Nova Publishers, New York, pp 245–305

    Google Scholar 

  • Spears J (1987) Agroforestry: a development-bank perspective. In: Steppler HA, PKR N (eds) Agroforestry: a decade of development. ICRAF, Nairobi

    Google Scholar 

  • Swaminathan MS (2012) Agroforestry for evergreen revolution. In: Nair PKR, Garrity D (eds) Agroforestry-the future of global land use, Advances in agroforestry, vol 9. Springer, Dordrecht, pp 7–10

    Chapter  Google Scholar 

  • Szabolcs I (1989) Salt-affected soils. CRC Press, Inc., Boca Raton, p 274

    Google Scholar 

  • Tabari M, Salehi A, Mohammadi J (2011) Impact of municipal waste water on growth and nutrition of afforested Pinus Eldarica stands. In: Sebastin F, Einschlag G (eds) Waste water- evaluation and management. InTech, Rijeka, pp 303–312. www.intechopen.com/books

    Google Scholar 

  • Tangahu BV, Rozaimah SA, Hassan B, Mushrifah I, Nurina A, Muhammad M (2011) A review on heavy metals (as, Pb, and hg) uptake by plants through phytoremediation. Int J Chem Eng:1–31. https://doi.org/10.1155/2011/939161

  • Tangjang S, Nair PKR (2016) Integrated bamboo + pine homegardens: a unique agroforestry system in Ziro Valley of Arunachal Pradesh, India. Int J Environ Agric Res 2:25–34

    Google Scholar 

  • TECA (2003) Improved fallows. TECA-FAO plateform for sharing agricultural technologies and practices. http://teca.fao.org

  • Tejwani KG (1994) Agroforestry in India. Oxford/IBH, New Delhi, p 233

    Google Scholar 

  • Tewari VP, Singh M (2000) Agroforestry: an alternative land use system in fragile hot arid ecosystem. In: Singh A, Dudeja SS, Singh S (eds) Resource management for sustainable agriculture. Society of Sustainable Agriculture and Resource Management, Hisar, pp 71–79

    Google Scholar 

  • Tewari VP, Singh M (2006) Tree-crop interaction in the Thar Desert of Rajasthan, India. Sècheresse 17(1–2):326–332

    Google Scholar 

  • Tewari VP, Arrawatia ML, Kishankumar VS (1997) Problem of soil salinity and water logging in Indira Gandhi Canal area of Rajasthan state. Ann Biol 13(1):7–13

    Google Scholar 

  • Tewari VP, Arrawatia ML, Singh M (1998) Prospects of agroforestry in hot arid areas of Rajasthan state in India. In: Narula N, Behl RK, Bangrawa KS (eds) Perspectives in sustainable agriculture. Society of Sustainable Agriculture and Resource Management, Hisar, pp 105–111

    Google Scholar 

  • Tewari JC, Bohra MD, Harsh LN (1999) Structure and production function of traditional extensive agroforestry systems and scope of agroforestry in Thar desert. Indian J Agrofor 1(1):81–94

    Google Scholar 

  • Tewari JC, Moola-Ram RMM, Dagar JC (2014) Livelihood improvements and climate change adaptations through agroforestry in hot arid environments. In: Dagar JC, Singh AK, Arunachalam A (eds) Agroforestry systems in India: livelihood security & ecosystem services, Advances in agroforestry, vol 10. Springer, New York, pp 155–184

    Chapter  Google Scholar 

  • Tewari JC, Raghuvanshi MS, Pareek K, Stanzin J, Partap R, Dagar JC (2016) Traditional agroforestry systems in Indian cold arid zone: case study of a village located near Leh, Ladakh. In: Dagar JC, Tewari JC (eds) Agroforestry research developments. Nova Publishers, New York, pp 181–196

    Google Scholar 

  • Thevathasan NV, Gordon AM et al (2012) Agroforestry research and development in Canada: the way forward. In: PKR N, Garrity DP (eds) Agroforestry: the future of global land use, Advances in agroforestry, vol 9. Springer, Dordrecht, pp 247–283

    Chapter  Google Scholar 

  • Tomar OS, Minhas PS (2002) Performance of some ornamental winter annual flowering species under saline irrigation. Indian J Hortic 59(2):201–206

    Google Scholar 

  • Tomar OS, Minhas PS (2004a) Relative performance of aromatic grasses under saline irrigation. Indian J Agron 49(3):207–208

    Google Scholar 

  • Tomar OS, Minhas PS (2004b) Performance of medicinal plant species under saline irrigation. Indian J Agron 49(3):209–211

    Google Scholar 

  • Tomar OS, Gupta RK, Dagar JC (1998) Afforestation techniques and evaluation of different tree species for waterlogged saline soils in semiarid tropics. Arid Soil Res Rehab 12(4):301–316

    Article  CAS  Google Scholar 

  • Tomar OS, Minhas PS, Sharma VK, Gupta RK (2003a) Response of nine forage grasses to saline irrigation and its schedules in a semi-arid climate of north-west India. J Arid Environ 55:533–544

    Article  Google Scholar 

  • Tomar OS, Minhas PS, Sharma VK, Singh YP, Gupta RK (2003b) Performance of 31 tree species and soil condition in a plantation established with saline irrigation. For Ecol Manag 177:333–346

    Article  Google Scholar 

  • Tomar OS, Dagar JC, Singh YP (2004) Forest and fruit trees for alkali soils. Indian Farm 53(11):44–47

    Google Scholar 

  • Tomar OS, Dagar JC, Minhas PS (2010) Evaluation of sowing methods, irrigation schedules, chemical fertilizer doses and varieties of Plantago ovata Forsk to rehabilitate degraded calcareous lands irrigated with saline water in dry regions of north western India. Arid Land Res Manag 24:133–151

    Article  CAS  Google Scholar 

  • Tomar JMS, Das A, Puni L, Chaturvedi OP, Munda GC (2012) Shifting cultivation in northeastern region of India – status and strategies for sustainable developemnt. Indian Forester 138(1):52–62

    Google Scholar 

  • Tripathy RS, Barik SK (2003) Shifting cultivation in North East India. In: Bhat BP, Bujarbaruah KM, Sharma YP, Patiram (eds) Proc. approaches for increasing agricultural productivity in hill and mountain eco system. ICAR Research Complex for NEH Region, Umiam. pp 317–322

    Google Scholar 

  • Tyrväinen L, Pauleit S, Seeland K, de Vries S (2005) Benefits and uses of urban forests and trees. In: Konijnendijk CC, Nilsson K, Randrup TB, Schipperijn J (eds) Urban forests and trees. Springer, Berlin, pp 81–114

    Chapter  Google Scholar 

  • Udawatta RP, Jose S (2011) Carbon sequestration potential of agroforestry practices in temperate North America. In: Kumar BM, Nair PKR (eds) Tropical homegardens: a time-tested example of sustainable agroforestry. Springer, Dordrecht, p 380

    Google Scholar 

  • van Veenhuizen R (2006) Cities farming for future. In: van Veenhuizen R (ed) Cities farming for the future-urban agriculture for green and productive systems. RUAF Foundation/IDRC & IIRR, Phillipines, p 459

    Google Scholar 

  • Verma A, Tewari JC, Kaushal R, Saresh NV (2016) Agroforestry for carbon sequestration in north-western Himalaya. In: Dagar JC, Tewari JC (eds) Agroforestry research developments. Nova Publishers, New York, pp 307–325

    Google Scholar 

  • Von Uexkull HR, Mutert E (1995) Global extent, development and economic impact of acid soils. In: Date RA, Grundon NJ, Raymet GE, Probert ME (eds) Plant soil interaction at low pH: principals and management. Kluwer Academic Publishers, Dordrecht, pp 5–19

    Chapter  Google Scholar 

  • Warriar MRR (1995) Wayanad in the middle ages. In: Johny KP (ed) Discover Wayanad – the green paradise. District Tourism Promotion Council, Kalpetta, pp 68–69

    Google Scholar 

  • Webb EL, Kabir EM (2009) Homegardening for tropical biodiversity conservation. Conserv Biol 23:1641–1644

    Article  PubMed  Google Scholar 

  • Wezel A, Bender S (2003) Plant species diversity of homegardens of Cuba and its significance for household food supply. Agrofor Syst 57:39–49

    Article  Google Scholar 

  • Wilken GC (1977) Intergrating forest and small-scale farm systems in middle America. Agroecosystems 3:291–302

    Google Scholar 

  • Wolf K (2004) Economic and public value of urban forests. Urban Agric Mag 13:31–33

    Google Scholar 

  • Xiuling You (1995) Chinese rice culture history. China Agric. Sci. & Tech. Publishing House, p 149

    Google Scholar 

  • Yadav RK, Dagar JC (2016) Innovations in utilization of poor-quality water for sustainable agricultural production. In: Dagar JC, Sharma PC, Sharma DK, Singh AK (eds) Innovative saline agriculture. Springer, Dordrecht, pp 219–264

    Chapter  Google Scholar 

  • Yadav JSP, Bandyopadhyay AK, Bandyopadhyay BK (1983) Extent of coastal saline soils in India. J Indian Soc Coast Agric Res 1:1–6

    Google Scholar 

  • Yadav RK, Goyal B, Sharma RK, Dubey SK, Minhas PS (2003) Post irrigation impact of domestic sewage effluent on composition of soils, crops and ground water-a case study. Environ Int 28:481–486

    Article  Google Scholar 

  • Yadav RK, Minhas PS, Lal K, Dagar JC (2016) Potential of wastewater disposal through tree plantations. In: Dagar JC, Minhas PS (eds) Agroforestry for management of waterlogged saline soils and poor-quality waters, Advances in agroforestry, vol 13. Springer, Dordrecht, pp 163–179

    Chapter  Google Scholar 

  • Young A (1989) Agroforestry for soil conservation. CABI, Wallingford, p 276

    Google Scholar 

  • Zheng SJ (2010) Crop production on acid soils: overcoming aluminium toxicity and phosphorus deficiency. Ann Bot 106(1):183–184

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagdish C. Dagar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dagar, J.C., Tewari, V.P. (2017). Evolution of Agroforestry as a Modern Science. In: Dagar, J., Tewari, V. (eds) Agroforestry. Springer, Singapore. https://doi.org/10.1007/978-981-10-7650-3_2

Download citation

Publish with us

Policies and ethics