Skip to main content

Reactor Design for Novel Green Urea Synthesis

  • Chapter
  • First Online:
Green Urea

Part of the book series: Green Energy and Technology ((GREEN))

  • 1042 Accesses

Abstract

Urea synthesis processes have been carried out at relatively high temperature (160–270 °C) and high pressure (120–250 bar). The use of high temperature and high pressure in urea synthesis is essential to increase production rate that would result in high profitability. New reaction method is proposed to produce the urea that requires lower pressure and temperature as compared to the conventional urea synthesis. This method is clean and green, used for the sustainable development that might change the landscape of future chemical processes. However, this is made possible due to the enhancement in nanotechnology where quantum mechanical understanding is called into play. New reactor designs are elaborated and discussed explicitly. Hematite nanocatalysts are used for this green urea synthesis process, in the presence of static and oscillating magnetic fields. Strategies to increase single to triplet conversion rate are performed for the better understanding on how to increase the urea rate of production. The focus on scrutinizing the greenhouse gas effect on the urea yield, in this case CO2 flow rate, is deliberated explicitly. The magnetic field strength and electromagnetic frequency are studied and empirically done for better understanding in singlet to triplet conversion. The highest urea yield of 17,472 ppm was obtained using a 1T static magnetic field, electromagnetic field of 5 GHz frequency, and 0.2 L/min CO2 flow rate. It is found that in the case of the pilot-scale reactor, urea yield has its optimum yield, 0.6 kg/hr, at 200 °C, 50 bar, and 3.25 GHz microwave frequency. This new method is a contender for urea and ammonia production that may change the landscape of chemical reaction in the future especially when zero carbon dioxide emission is required for the future sustainable development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smil, V. (2004). Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production. MIT press.

    Google Scholar 

  2. Maxwell, G. R. (2004). Synthetic nitrogen products: a practical guide to the products and processes, pp. 267–284.

    Google Scholar 

  3. Meessen, J. H., & Petersen, H. (1996). Ullmann’s encyclopedia of industrial chemistry.

    Google Scholar 

  4. Isla, M. A., Irazoqui, H. A., & Genoud, C. M. (1993). Simulation of a urea synthesis reactor. 1. Thermodynamic framework. Industrial and Engineering Chemistry Research, 32, 2662–2670.

    Article  Google Scholar 

  5. Irazoqui, H. A., Isla, M. A., & Genoud, C. M. (1993). Simulation of a urea synthesis reactor. 2. Reactor model. Industrial and Engineering Chemistry Research, 32, 2671–2680.

    Article  Google Scholar 

  6. Jiles, D. (2015). Introduction to magnetism and magnetic materials. CRC press.

    Google Scholar 

  7. Alqasem, B., Yahya, N., Soleimani, H., Qureshi, S., Irfan, M., & Rehman, Z. U. (2016). Experimental study on the effect of saturation magnetization of hematite nanocatalyst for green ammonia production. In: AIP conference proceedings, p. 030002.

    Google Scholar 

  8. Kiebarev, S., Ea, P., & Shustov, A. (1972). Influence of a magnetic-field on the photooxidation rate of some crystalline aromatic-hydrocarbons. Doklady Akademii Nauk SSSR, 204, 376.

    Google Scholar 

  9. Lawler, R., & Evans, G. (1971). Some chemical consequences of magnetic interactions in radical pairs. Providence: Brown University.

    Google Scholar 

  10. Frankevich, E., & Sokolik, I. (1971). Influence of magnetic field on the rate of photooxidation of aromatic hydrocarbons. ZhETF Pisma Redaktsiiu, 14, 577.

    Google Scholar 

  11. Turro, N. J. (1983). Influence of nuclear spin on chemical reactions: Magnetic isotope and magnetic field effects (a review). Proceedings of the National Academy of Sciences, 80, 609–621.

    Article  Google Scholar 

  12. Schulten, K. (1982). Magnetic field effects in chemistry and biology. Festkörperprobleme, 22, 61–83.

    Google Scholar 

  13. Hayashi, H. (2004). Introduction to dynamic spin chemistry: magnetic field effects on chemical and biochemical reactions, vol. 8: World Scientific Publishing Co Inc.

    Google Scholar 

  14. McLauchlan, K. (1981). The effects of magnetic fields on chemical reactions. Science Progress (1933-), 67, 509–529.

    Google Scholar 

  15. Timmel, C., Till, U., Brocklehurst, B., McLauchlan, K., & Hore, P. (1998). Effects of weak magnetic fields on free radical recombination reactions. Molecular Physics, 95, 71–89.

    Article  Google Scholar 

  16. Steiner, U., & Ulrich, T. (1989). Magnetic field effects in chemical kinetics and related phenomena. Chemical Reviews, 89, 51–147.

    Article  Google Scholar 

  17. Yue, Q., Shao, Z., Chang, S., & Li, J. (2013). Adsorption of gas molecules on monolayer MoS 2 and effect of applied electric field. Nanoscale Research Letters, 8, 425.

    Article  Google Scholar 

  18. Woodward, J. (2002). Radical pairs in solution. Progress in Reaction Kinetics and Mechanism, 27, 165–207.

    Article  Google Scholar 

  19. Stass, D., Woodward, J., Timmel, C., Hore, P., & McLauchlan, K. (2000). Radiofrequency magnetic field effects on chemical reaction yields. Chemical Physics Letters, 329, 15–22.

    Article  Google Scholar 

  20. Woodward, J., Jackson, R., Timmel, C., Hore, P., & McLauchlan, K. (1997). Resonant radiofrequency magnetic field effects on a chemical reaction. Chemical Physics Letters, 272, 376–382.

    Article  Google Scholar 

  21. Timmel, C., & Hore, P. (1996). Oscillating magnetic field effects on the yields of radical pair reactions. Chemical Physics Letters, 257, 401–408.

    Article  Google Scholar 

  22. Yahya, N., Qureshi, S., Rehman, Z. U., Alqasem, B., Fai Kait, C. (2017). Green urea synthesis catalyzed by hematite nanowires in magnetic field. Journal of Magnetism and Magnetic Materials, 428, 469–480.

    Google Scholar 

  23. Alqasem, B., Yahya, N., Qureshi, S., Irfan, M., Rehman, Z. U., & Soleimani, H. (2017). The enhancement of the magnetic properties of α-Fe2O3 nanocatalyst using an external magnetic field for the production of green ammonia. Materials Science and Engineering B, 217, 49–62.

    Article  Google Scholar 

  24. Yahya, N., Alqasem, B., Irfan, M., Qureshi, S., Rehman, Z. U., Shafie, A., et al. (2016). The effect of saturation magnetization of nanocatalyst and oscillating magnetic field for green urea synthesis. Physica B: Condensed Matter, 507, 95–106.

    Article  Google Scholar 

  25. Yahya, N., Puspitasari, P. (2013). Y3Fe5O12 nanocatalyst for green ammonia production by using magnetic induction method. Journal of Nano Research, 131–137.

    Google Scholar 

  26. Qureshi, S., Yahya, N., Kait, C. F., Alqasem, B., & Irfan, M. (2017). Enhanced catalytic activity of α-Fe2O3 with the adsorption of gases for ammonia synthesis. In Materials science forum, pp. 15–18.

    Google Scholar 

  27. Boxer, S. G., Chidsey, C. E., & Roelofs, M. G. (1983). Magnetic field effects on reaction yields in the solid state: an example from photosynthetic reaction centers. Annual Review of Physical Chemistry, 34, 389–417.

    Article  Google Scholar 

  28. Atkins, P., & Lambert, T. (1975). The effect of a magnetic field on chemical reactions. Annual Reports on the Progress of Chemistry, Section A: Physical and Inorganic Chemistry, 72, 67–88.

    Article  Google Scholar 

  29. Sagdeev, R., Molin, Y. N., Salikhov, K., Leshina, T., Kamha, M., & Shein, S. (1973). Effects of magnetic field on chemical reactions. Organic Magnetic Resonance, 5, 603–605.

    Article  Google Scholar 

  30. Jing-Biao, C., Feng-Zhi, W., Dong-Hai, Y., & Yi-Qiu, W. (2001). Alternating current zeeman and stark interference effect in ramsey separated oscillating fields. Chinese Physics Letters, 18, 202.

    Article  Google Scholar 

  31. Autler, S. H., & Townes, C. H. (1955). Stark effect in rapidly varying fields. Physical Review, 100, 703.

    Article  Google Scholar 

  32. Hedvall, J. A. (1935). Über die im Verlauf von Phasenäunderungen in festen stoffen auftretende erhöuhung der chemischen Reaktionsfähigkeit. Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie, 41, 445–448.

    Google Scholar 

  33. Hedvall, J. A., Hedin, R., & Persson, O. (1934). Ferromagnetic transformation and catalytic activity. Zeitschrift fur Physikalische Chemie, Abteilung B, 27, 196.

    Google Scholar 

  34. Petrucci, H., & Madura, H. (2007). General chemistry principles and modern applications. New Jersey: Prentice Hall.

    Google Scholar 

  35. Levenspiel, O. (1999). Chemical reaction engineering (3rd ed.), pp. 211–214.

    Google Scholar 

  36. Scott Fogler, H. (2005). Element of chemical reaction engineering (4th ed.), pp. 511–512.

    Google Scholar 

  37. Kjeldahl, J. Z. (1883). A new method for the determination of nitrogen in organic bodies. Analytical Chemistry 22, 366.

    Google Scholar 

  38. Richardson, J. T. (2009). Journal of Applied Catalyst. 3, 1781–1786.

    Google Scholar 

  39. Mavrovic, I. (1965). Urea Synthesis Process. U.S. Patent 3,172,911, issued Mar 9, 1965.

    Google Scholar 

  40. Cook, L. H. (1974). Urea Synthesis Process. U.S. Patent 3,816,528, issued Jun 11, 1974.

    Google Scholar 

  41. Cook, L. H., & Mavrovic, I. (1965). Urea Synthesis Process. U.S. Patent 3,200,148, issued Aug 10, 1965.

    Google Scholar 

  42. Maxim, K. (1972). Urea Synthesis Process. U.S. Patent 3,668,250, issued Jun 6, 1972.

    Google Scholar 

  43. Marten, J. H., Nixon, N. J. (1967). Urea Synthesis Process. U.S. Patent 3,354,205 issued Nov 21, 1967.

    Google Scholar 

  44. Mavrovic, I. (1981). Urea Synthesis Process. U.S. Patent 4, 296,252, issued Oct 20, 1981.

    Google Scholar 

  45. Cook, L. H. (1968). Urea Synthesis Process. U.S. Patent 3,370,090, issued Feb 20, 1968.

    Google Scholar 

  46. Mavrovic, I. (1970). Urea Synthesis Process. U.S. Patent 3,527,799, issued Sep 8, 1970.

    Google Scholar 

  47. Sakata, E., & Kojima, Y. (2003). Urea Synthesis Process. U.S. Patent 6,518,457, issued Feb 11, 2003.

    Google Scholar 

  48. Mavrovic, I. (1971). Urea Synthesis Process. U.S. Patent 3,579,636, issued May 18, 1971.

    Google Scholar 

  49. Christoph, M., Denis, K., Olaf, V. M., & Matthias, K. P. (2017). Method for preparation of ammonia gas and CO2 for a urea synthesis process. U.S. Patent 20,170,210,703 issued Jul 27, 2017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noorhana Yahya .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yahya, N. (2018). Reactor Design for Novel Green Urea Synthesis. In: Green Urea . Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7578-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7578-0_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7577-3

  • Online ISBN: 978-981-10-7578-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics