Baseline Correction in EMG Signals Using Mathematical Morphology and Canonical Correlation Analysis

  • Vikrant Bhateja
  • Ashita Srivastava
  • Deepak Kumar Tiwari
  • Deeksha Anand
  • Suresh Chandra Satapathy
  • Nguyen Gia Nhu
  • Dac-Nhuong Le
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 695)


Electromyogram (EMG) signal is a demonstration of muscular contraction. This being a non-stationary signal is distorted by Baseline Wander. Proper correction of Baseline Wander is a major issue while acquiring EMG signals as it may deteriorate the quality of the signal and make its diagnostic analysis difficult. This paper aims at proposing an effective method for Baseline Wander correction in the baseline-drifted EMG signals. Canonical correlation analysis (CCA) algorithm is first performed on the baseline-corrupted EMG signals to decompose them into various canonical components or variates. After that, morphological filtering deploying octagon-shaped structuring element is used to filter each canonical component. Finally, the results of the proposed technique are compared with the CCA-Gaussian- and CCA-thresholding-based techniques. Simulation results report that the Baseline Wander correction approach used in this work satisfyingly eliminates the Baseline Wander from EMG signals while distorting the original EMG signal to a minimum.


EMG Baseline wander CCA Morphological filtering 


  1. 1.
    Luca, C.D.J., Adam, A., Wotiz, R., Gilmore, L.D., Nawab, S.H.: Decomposition of surface EMG signals. J. Neurophysiol. 96, 1647–1654 (2006)Google Scholar
  2. 2.
    Ahsan, M.R., Ibrahimy, M., Khalifa, O.O.: EMG signal classification for human computer interaction: a review. J. Sci. Res. 33, 480–501 (2009)Google Scholar
  3. 3.
    Canal, M.R.: Comparison of wavelet and short time fourier transform methods in the analysis of EMG signals. J. Med. Syst. 34(1), 91–94 (2010) (Springer)CrossRefGoogle Scholar
  4. 4.
    Fasano, A., Villani, V.: Baseline wander removal for bioelectrical signals by quadratic variation reduction, J. Signal Process. 99, 48–57 (2014) (Elsevier)CrossRefGoogle Scholar
  5. 5.
    Rodriguez, I., Gila, L., Malanda, A., Campos, C., Morales, G.: Baseline Removal from EMG Recordings. In: IEEE 23rd Annual International Conference on Engineering in Medicine and Biology Society, pp. 1–6 (2001)Google Scholar
  6. 6.
    Janani, R.: Analysis of wavelet families for baseline wander removal in ECG signals. Int. J. Adv. Res. Comput. Sci. Manag. Stud. 2(2), 169–176 (2014)Google Scholar
  7. 7.
    Shin, S.W., Kim, K.S., Song, C.G., Lee, J.W., Kim, J.H., Jeung, G.W.: Removal of baseline wandering in ECG signal by improved detrending method. J. Bio-Med. Mater. Eng. 26, 1087–1093 (2015)CrossRefGoogle Scholar
  8. 8.
    Bhateja, V., Urooj, S., Mehrotra, R., Verma, R., Lay-Ekuakille, A., Verma, V.D.: A composite wavelets and morphology approach for ECG noise filtering. In: International Conference on Pattern Recognition and Machine Intelligence, pp. 361–366. Springer, Heidelberg (2013)Google Scholar
  9. 9.
    Bhateja, V., Verma, R., Mehrotra, R., Urooj, S.: A non-linear approach to ECG signal processing using morphological filters. Int. J. Meas. Technol. Instrum. Eng. (IJMTIE) 3(3), 46–59 (2013)Google Scholar
  10. 10.
    Verma, R., Mehrotra, R., Bhateja, V.: A new morphological filtering algorithm for pre-processing of electrocardiographic signals. In: Proceedings of the Fourth International Conference on Signal and Image Processing 2012 (ICSIP 2012), pp. 193–201. Springer, India (2013)Google Scholar
  11. 11.
    Harrach, M.A., Boudaoud, S., Hassan, M., Ayachi, F.S., Gamet, D., Grosset, J.F., Marin, F.: Denoising of HD-sEMG signals using canonical correlation analysis. Med. Biol. Eng. Comput. 55(3), 375–388 (2017)CrossRefGoogle Scholar
  12. 12.
    Hassan, M., Boudaoud, S., Terrien, J., Marque, C.: Combination of canonical correlation analysis and empirical mode decomposition applied to denoising the labor electrohysterogram. IEEE Trans. Biomed. Eng. 58, 2441–2447 (2011)CrossRefGoogle Scholar
  13. 13.
    Verma, R., Mehrotra, R., Bhateja, V.: An improved algorithm for noise suppression and baseline correction of ECG signals, vol. 199, pp. 733–739. Springer, Heidelberg (2013)Google Scholar
  14. 14.
    Shrivastava, A., Alankrita, A.R., Bhateja, V.: Combination of wavelet transform and morphological filtering for enhancement of magnetic resonance images. In: International Conference on Digital Information Processing and Communications (ICDIPC), pp. 460–474 (2011)Google Scholar
  15. 15.
    Frank, A., Asuncion, A.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, USA (2010)Google Scholar
  16. 16.
    Lay-Ekuakille, A., Vergallo, P., Griffo, G., Urooj, S., Bhateja, V., Conversano, F., Casciaro, S., Trabacca, A.: Mutidimensional analysis of EEG features using advanced spectral estimates for diagnosis accuracy. In: 2013 IEEE International Symposium on Medical Measurements and Applications Proceedings (MeMeA), pp. 237–240. IEEE (2013)Google Scholar
  17. 17.
    Vergallo, P., Lay-Ekuakille, A., Giannoccaro, N.I., Trabacca, A., Labate, D., Morabito, F.C., Urooj, S., Bhateja, V.: Identification of visual evoked potentials in EEG detection by emprical mode decomposition. In: 2014 11th International Multi-Conference on Systems, Signals and Devices (SSD), pp. 1–5. IEEE (2014)Google Scholar
  18. 18.
    Lay-Ekuakille, A., Vergallo, P., Griffo, G., Conversano, F., Casciaro, S., Urooj, S., Bhateja, V., Trabacca, A.: Entropy index in quantitative EEG measurement for diagnosis accuracy. IEEE Trans. Instrum. Meas. 63(6), 1440–1450 (2014)CrossRefGoogle Scholar
  19. 19.
    Vergallo, P., Lay-Ekuakille, A., Urooj, S., Bhateja, V.: Spatial filtering to detect brain sources from EEG measurements. In: 2014 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 1–5. IEEE (2014)Google Scholar
  20. 20.
    Lay-Ekuakille, A., Griffo, G., Conversano, F., Casciaro, S., Massaro, A., Bhateja, V., Spano, F.: EEG signal processing and acquisition for detecting abnormalities via bio-implantable devices. In: 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 1–5. IEEE (2016)Google Scholar
  21. 21.
    Qiang, L., Bo, L.: The muscle activity detection from surface EMG signal using the morphological filter. Appl. Mech. Mater. 195, 1137–1141 (2012)Google Scholar
  22. 22.
    Tiwari, D.K., Bhateja, V., Anand, D., Srivastava, A., Omar, Z.: Combination of EEMD and morphological filtering for baseline wander correction in EMG signals. In: Proceedings of 2nd International Conference on Micro-Electronics, Electromagnetics and Telecommunications, pp. 365–373. Springer, Singapore (2018)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Vikrant Bhateja
    • 1
  • Ashita Srivastava
    • 1
  • Deepak Kumar Tiwari
    • 1
  • Deeksha Anand
    • 1
  • Suresh Chandra Satapathy
    • 2
  • Nguyen Gia Nhu
    • 3
  • Dac-Nhuong Le
    • 4
  1. 1.Department of Electronics and Communication EngineeringShri Ramswaroop Memorial Group of Professional Colleges (SRMGPC)LucknowIndia
  2. 2.PVP Siddhartha Institute of TechnologyVijayawadaIndia
  3. 3.Duytan UniversityDanangVietnam
  4. 4.Haiphong UniversityHaiphongVietnam

Personalised recommendations