Advertisement

Feature Selection Using Histogram-Based Multi-objective GA for Handwritten Devanagari Numeral Recognition

  • Manosij Ghosh
  • Ritam Guha
  • Riktim Mondal
  • Pawan Kumar Singh
  • Ram Sarkar
  • Mita Nasipuri
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 695)

Abstract

In this paper, we propose an efficient feature selection method, called Histogram-Based Multi-objective Genetic Algorithm (HMOGA), for finding informative features from high-dimensional data which also improves the classification accuracy. This approach is applied on two previously proposed feature sets for handwritten Devanagari numeral recognition problem. With the feature set selected by HMOGA, final recognition is performed using the Multi-layer Perceptron (MLP)-based classifier. The rise in classification accuracy using only 50% of the original feature vector portrays the applicability of the developed idea for multi-objective optimization.

Keywords

Handwritten numeral recognition Devanagari script Feature selection Histogram-Based Multi-objective Genetic Algorithm 

References

  1. 1.
    Gharde, S.S., Ramteke, R.J., Kotkar, V.A., Bage, D.D.: Handwritten devanagari numeral and vowel recognition using invariant moments. In: Proceedings of IEEE International Conference of Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC), pp. 255–260 (2016)Google Scholar
  2. 2.
  3. 3.
    Chaudhary, M., HasnineMirja, M., Mittal, N.K.: hindi numeral recognition using neural network. Int. J. Sci. Eng. Res. 5(6), 260–268 (2014)Google Scholar
  4. 4.
    Hanmandlu, M., Ramana Murthy, O.V.: Fuzzy model based recognition of handwritten hindi numerals. Pattern Recogn. 40(6), 1840–1854 (2006)Google Scholar
  5. 5.
    Bajaj, R., Dey, L., Chaudhury, S.: Devnagari numerals recognition by combining decision of multiple connectionist classifiers. Sadhana 27(part I), 59–72 (2002)CrossRefGoogle Scholar
  6. 6.
    Pandey, A., Kumar, A., Kumar, R., Tiwari, A.: Handwritten devanagri number recognition using majority voting scheme. Int. J. Comput. Sci. Inf. Technol. Secur. (IJCSITS) 2(3), 631–636 (2012)Google Scholar
  7. 7.
    Arora, S., Bhattacharjee, D., Nasipuri, M., Kundu, M., Basu, D.K., Malik, L.: Handwritten devnagari numeral recognition using SVM and ANN. Int. J. Comput. Sci. Emerg. Technol. (IJCSET) 1(2), 40–46 (2010)Google Scholar
  8. 8.
    Dongre, V.J., Mankar, V.H.: Devnagari handwritten numeral recognition using geometric features and statistical combination classifier. Int. J. Comput. Sci. En. (IJCSE) 5(10) (2013)Google Scholar
  9. 9.
    Shahamat, H., Pouyan, A.A.: Feature selection using genetic algorithm for classification of schizophrenia using fMRI data. J. AI Data Min. 3(1), 30–37 (2015)Google Scholar
  10. 10.
    Khare, P., Burse, K.: Feature selection using genetic algorithm and classification using weka for ovarian cancer. Int. J. Comput. Sci. Inf. Technol. (IJCSIT) 7(1), 194–196 (2016)Google Scholar
  11. 11.
    Hong, S.S., Lee, W., Han, M.M.: The feature selection method based on genetic algorithm for efficient of text clustering and text classification. Int. J. Adv. Soft Comput. Andits Appl. 7(1), 22–40 (2015)Google Scholar
  12. 12.
    Imani, M.B., Pourhabibi, T., Keyvanpour, M.R., Azmi, R.: A new feature selection method based on ant colony and genetic algorithm on persian font recognition. Int. J. Mach. Learn. Comput. 2(3), 278–282 (2012)CrossRefGoogle Scholar
  13. 13.
    Aalaei, S., Shahraki, H., Rowhanimanesh, A., Eslami, S.: Feature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets. Iranian J. Basic Med. Sci. 19(5), 476–482 (2016)Google Scholar
  14. 14.
    Kaya, Y., Pehlivan, H.: Feature selection using genetic algorithms for premature ventricular contraction classification. In: Proceedings of 9th IEEE International Conference on Electrical and Electronics Engineering (ELECO), pp. 1229–1232 (2015)Google Scholar
  15. 15.
    Singh, P.K., Das, S., Sarkar, R., Nasipuri, M.: Recognition of handwritten indic script numerals using mojette transform. In: Proceedings of 1st International Conference on Intelligent Computing and Communication (ICIC2), AISC 458, pp. 459–466 (2016)Google Scholar
  16. 16.
    Singh, P.K., Das, S., Sarkar, R., Nasipuri, M.: Recognition of offline handwritten devanagari numerals using regional weighted run length features. In: Proceedings of 1st IEEE International Conference on Computer, Electrical and Communication Engineering (ICCECE) (2017). ISBN (Print)-978-1-4799-4446-0.  https://doi.org/10.1109/c3it.2015.7060113
  17. 17.
    Guedon, J.P., Normand, N.: The Mojette transform: the first ten years. In: Discrete Geometry for Computer Imagery, LNCS 3429, pp. 79–91, Poitier, France (2005)CrossRefGoogle Scholar
  18. 18.
    Vásárhelyi, J., Serfözö, P.: Analysis of mojette transform implementation on reconfigurable hardware. In: Dagstuhl Seminar Proceedings 06141, Dynamically Reconfigurable Architectures (2006). http://drops.dagstuhl.de/opus/volltexte/2006/746
  19. 19.
    Murata, T., Ishibuchi, H.: MOGA: multi-objective genetic algorithms. In: Proceedings of IEEE International Conference on Evolutionary Computation (1995)Google Scholar
  20. 20.
    Dehuri, S., Paitnaik, S., Ghosh, A., Mall, R.: Application of elitist multi-objective genetic algorithm for classification rule generation. Appl. Soft Comput. 8(1), 477–487 (2008)CrossRefGoogle Scholar
  21. 21.
    Spears, W.M., De Jong, K.A.: On the virtues of parameterized uniform crossover. In: Proceedings of 4th International Conference on Genetic Algorithms, pp. 230–236 (1991)Google Scholar
  22. 22.
    Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989)CrossRefGoogle Scholar
  23. 23.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, vol. I. Prentice-Hall, India (1992)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Manosij Ghosh
    • 1
  • Ritam Guha
    • 1
  • Riktim Mondal
    • 1
  • Pawan Kumar Singh
    • 1
  • Ram Sarkar
    • 1
  • Mita Nasipuri
    • 1
  1. 1.Department of Computer Science and EngineeringJadavpur UniversityKolkataIndia

Personalised recommendations