A Novel Arbitrary-Oriented Multilingual Text Detection in Images/Video

  • H. T. Basavaraju
  • V. N. Manjunath Aradhya
  • D. S. Guru
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 701)


Text in images and videos plays a vital role to understand the events. The textual information is a prominent source and semantic information of a particular content of the respective image or video. Text detection is a primary stage for text recognition and text understanding. Still, text detection process is a challenging and interesting research work in the field of computer vision due to illumination, alignments, complex background and variation size, color, fonts of the text. The multilingual text consists of different geometrical structures of languages. In this paper, a simple and yet effective approach is presented to detect the text from arbitrary oriented multilingual images/video. The proposed method is based on Laplacian of Gaussian information and full connected component analysis. The proposed method is evaluated on four datasets such as Hua’s dataset, arbitrarily oriented dataset, Multi-script Robust Reading Competition (MRRC) dataset and MSRA dataset with performance measures precision, recall and f-measure. The results show that the proposed method is promising and encouraging.


Multilingual text Arbitrary-Oriented Laplacian of Gaussian Full connected component 


  1. 1.
    Khare, V., Shivakumara, P., Raveendran, P.: Multi-oriented moving text detection. International Symposium on Intelligent Signal Processing and Communication Systems, pp. 347–352 (2014)Google Scholar
  2. 2.
    Minemura, K., Palaiahnakote, S., Wong, K.: Multi-oriented text detection for intra-frame in H. 264/AVC video. International Symposium on Intelligent Signal Processing and Communication Systems, pp. 330–335 (2014)Google Scholar
  3. 3.
    He, T., Huang, W., Qiao, Y., Yao, J.: Text-attentional convolutional neural network for scene text detection. IEEE Trans. Image Process. 25(6), 2529–2541 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Wu, H., Zou, B., Zhao, Y.Q., Guo, J.: Scene text detection using adaptive color reduction, adjacent character model and hybrid verification strategy. Vis. Comput. 33(1), 113–126 (2017)CrossRefGoogle Scholar
  5. 5.
    Zhou, X., Yao, C., Wen, H., Wang, Y., Zhou, S., He, W., Liang, J.: EAST: an efficient and accurate scene text detector (2017). arXiv:1704.03155
  6. 6.
    Ma, J., Shao, W., Ye, H., Wang, L., Wang, H., Zheng, Y., Xue, X.: Arbitrary-oriented scene text detection via rotation proposals (2017). arXiv:1703.01086
  7. 7.
    Pavithra, M.S., Aradhya, V.N.M.: A comprehensive of transforms, Gabor filter and k-means clustering for text detection in images and video. Appl. Comput. Inform., 1–15 (2014)Google Scholar
  8. 8.
    Jeong, M., Jo, K.H.: Multi language text detection using fast stroke width transform. 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision, pp. 1–4 (2015)Google Scholar
  9. 9.
    Ren, X., Zhou, Y., Huang, Z., Sun, J., Yang, X., Chen, K.: A novel text structure feature extractor for chinese scene text detection and recognition. IEEE Access 5, 3193–3204 (2017)CrossRefGoogle Scholar
  10. 10.
    Liao, W.H., Wu, Y.C.: An integrated approach for multilingual scene text detection. Int. J. Comput. Inf. Syst. Ind. Manag. Appl. 8, 033–041 (2016)Google Scholar
  11. 11.
    Hua, X.S., Wenyin, L., Zhang, H.J.: An automatic performance evaluation protocol for video text detection algorithms. IEEE Trans. CSVT, 498–507 (2004)Google Scholar
  12. 12.
    Lu, C., Wang, C., Dai, R.: Text detection in images based on unsupervised classification of edge-based features. In: Proceedings of ICDAR, pp. 610–614 (2005)Google Scholar
  13. 13.
    Multi-script robust reading competition.
  14. 14.
    Yao, C., Bai, X., Liu, W., Ma, Y., Tu, Z.: Detecting texts of arbitrary orientations in natural images. In: Proceedings of CVPR, pp. 1083–1090 (2012)Google Scholar
  15. 15.
    Shivakumara, P., Basavaraju, H.T., Guru, D.S., Tan, C.L.: Detection of curved text in video: quad tree based method. In: 12th International Conference on Document Analysis and Recognition (ICDAR), pp. 594–598 (2013)Google Scholar
  16. 16.
    Sharma, N., Shivakumara, P., Pal, U., Blumenstein, M., Tan, C.L.: A new method for arbitrarily-oriented text detection in video. In: Proceedings of DAS, pp. 74–78 (2012)Google Scholar
  17. 17.
    Shivakumara, P., Sreedhar, R.P., Phan, T.Q., Lu, S., Tan, C.L.: Multi-oriented video scene text detection through Bayesian classification and boundary growing. IEEE Trans. CSVT, 1227–235 (2012)CrossRefGoogle Scholar
  18. 18.
    Shivakumara, P., Phan, T. Q., Tan, C.L.: A laplacian approach to multi-oriented text detection in video. IEEE Trans. PAMI, 412–419 (2011)Google Scholar
  19. 19.
    Zhou, J., Xu, L., Xiao, B., Dai, R.: A robust system for text extraction in video. In: Proceedings of ICMV, pp. 119–124 (2007)Google Scholar
  20. 20.
    Shivakumara, P., Phan, T.Q., Tan, C.L.: New Fourier-statistical features in RGB space for video text detection. IEEE Trans. CSVT, 1520–1532 (2010)Google Scholar
  21. 21.
    Lu, C., Wang, C., Dai, R.: Text detection in images based on unsupervised classification of edge-based features. In: Proceedings of ICDAR, pp. 610–614 (2005)Google Scholar
  22. 22.
    Wong, E.K., Chen, M.: A new robust algorithm for video text extraction. Pattern Recognit., 1397–1406 (2003)Google Scholar
  23. 23.
    Cai, M., Song J., Lyu, M.R.: A new approach for video text detection. In: Proceedings of ICIP, pp. 117–120 (2002)Google Scholar
  24. 24.
    Dey, S., Shivakumara, P., Raghunandan, K.S., Pal, U., Lu, T., Kumar, G.H., Chan, C.S.: Script independent approach for multi-oriented text detection in scene image. Neurocomputing 242, 96–112 (2017)CrossRefGoogle Scholar
  25. 25.
    Shivakumara, P., Phan, T.Q., Tan, C.L.: New wavelet and color features for text detection in video. In: Proceedings of ICPR, pp. 3996–3999 (2010)Google Scholar
  26. 26.
    Epshtein, B., Ofek, E., Wexler, Y.: Detecting text in natural scenes with stroke width transform. In: Computer Vision and Pattern Recognition (CVPR), pp. 2963–2970 (2010)Google Scholar
  27. 27.
    Rong, L., Suyu, W., Shi, Z.: A two level algorithm for text detection in natural scene images. In: 11th IAPR International Workshop on Document Analysis Systems (DAS), pp. 329–333 (2014)Google Scholar
  28. 28.
    Mosleh, A., Bouguila, N., Hamza, A.B.: Automatic inpainting scheme for video text detection and removal. IEEE Trans. Image Process. 32(4), 460–472 (2013)Google Scholar
  29. 29.
    Li, Y., Jia, W., Shen, C., Hengel, A.V.D.: Characterness: an indicator of text in the wild. IEEE Trans. Image Process. 23, 1666–1677 (2014)Google Scholar
  30. 30.
    Zhao, X., Lin, K.H., Fu, Y., Hu, Y., Liu, Y., Huang, T.S.: Text from corners: a novel approach to detect text and caption in videos. IEEE Trans. Image Proces. 20, 790–799 (2011)Google Scholar
  31. 31.
    Yin, X.C., Yin, X., Huang, K., Hao, H.W.: Robust text detection in natural scene images. IEEE Trans. PAMI 36, 970–983 (2014)Google Scholar
  32. 32.
    Risnumawan, A., Shivakumara, P., Chan, C.S., Tan, C.L.: A robust arbitrary text detection system for natural scene images. ESWA 41, 8027–8048 (2014)CrossRefGoogle Scholar
  33. 33.
    Kang, L., Li, Y., Doermann, D.: Orientation robust text line detection in natural images. In: Proceedings of CVPR, pp. 4034–4041 (2014)Google Scholar
  34. 34.
    Yao, C., Bai, X., Liu, W.: A unified framework for multioriented text detection and recognition. IEEE Trans. Image Process. 23, 4737–4749 (2014)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Yin, X.C., Pei, W.Y., Zuang, J., Hao, H.W.: Multi-orientation scene text detection with adaptive clustering. IEEE Trans. PAMI 37, 1930–1937 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • H. T. Basavaraju
    • 1
  • V. N. Manjunath Aradhya
    • 1
  • D. S. Guru
    • 2
  1. 1.Department of Master of Computer ApplicationsSri Jayachamarajendra College of EngineeringMysoreIndia
  2. 2.Department of Studies in Computer ScienceUniversity of MysoreMysoreIndia

Personalised recommendations