Skip to main content

Reporter Analyses Reveal Redundant Enhancers that Confer Robustness on Cis-Regulatory Mechanisms

  • Chapter
  • First Online:
Transgenic Ascidians

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1029))

Abstract

Reporter analyses of Hox1 and Brachyury (Bra) genes have revealed examples of redundant enhancers that provide regulatory robustness. Retinoic acid (RA) activates through an RA-response element the transcription of Hox1 in the nerve cord of the ascidian Ciona intestinalis. We also found a weak RA-independent neural enhancer within the second intron of Hox1. The Hox1 gene in the larvacean Oikopleura dioica is also expressed in the nerve cord. The O. dioica genome, however, does not contain the RA receptor-encoding gene, and the expression of Hox1 has become independent of RA. We have found that the upstream sequence of the O. dioica Hox1 was able to activate reporter gene expression in the nerve cord of the C. intestinalis embryo, suggesting that an RA-independent regulatory system in the nerve cord might be common in larvaceans and ascidians. This RA-independent redundant regulatory system may have facilitated the Oikopleura ancestor losing RA signaling without an apparent impact on Hox1 expression domains. On the other hand, vertebrate Bra is expressed in the ventral mesoderm and notochord, whereas its ascidian ortholog is exclusively expressed in the notochord. Fibroblast growth factor (FGF) induces Bra in the ventral mesoderm in vertebrates, whereas it induces Bra in the notochord in ascidians. Disruption of the FGF signal does not completely silence Bra expression in ascidians, suggesting that FGF-dependent and independent enhancers might comprise a redundant regulatory system in ascidians. The existence of redundant enhancers, therefore, provides regulatory robustness that may facilitate the acquisition of new expression domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albalat R, Cañestro C (2009) Identification of Aldh1a, Cyp26 and RAR orthologs in protostomes pushes back the retinoic acid genetic machinery in evolutionary time to the bilaterian ancestor. Chem Biol Interact 178:188–196

    Article  CAS  PubMed  Google Scholar 

  • Albalat R, Cañestro C (2016) Evolution by gene loss. Nat Rev Genet 17:379–391

    Article  CAS  PubMed  Google Scholar 

  • Amaya E, Musci TJ, Kirschner MW (1991) Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell 66:257–270

    Article  CAS  PubMed  Google Scholar 

  • Barolo S (2011) Shadow enhancers: frequently asked questions about distributed cis-regulatory information and enhancer redundancy. BioEssays 34:135–141

    Article  PubMed  PubMed Central  Google Scholar 

  • Cañestro C, Postlethwait JH (2007) Development of a chordate anterior–posterior axis without classical retinoic acid signaling. Dev Biol 305:522–538

    Article  PubMed  Google Scholar 

  • Cañestro C, Bassham S, Postlethwait JH (2005) Development of the central nervous system in the larvacean Oikopleura dioica and the evolution of the chordate brain. Dev Biol 285:298–315

    Article  PubMed  Google Scholar 

  • Cañestro C, Postlethwait JH, Gonzàlez-Duarte R, Albalat R (2006) Is retinoic acid genetic machinery a chordate innovation? Evol Dev 8:394–406

    Article  PubMed  Google Scholar 

  • Cañestro C, Yokoi H, Postlethwait JH (2007) Evolutionary developmental biology and genomics. Nat Rev Genet 8:932–942

    Article  PubMed  Google Scholar 

  • Cañestro C, Bassham S, Postlethwait JH (2008) Evolution of the thyroid: anterior-posterior regionalization of the Oikopleura endostyle revealed by Otx, Pax2/5/8, and Hox1 expression. Dev Dyn 237:1490–1499

    Article  PubMed  Google Scholar 

  • Corbo JC, Levine M, Zeller RW (1997) Characterization of a notochord-specific enhancer from the Brachyury promoter region of the ascidian, Ciona intestinalis. Development 124:589–602

    CAS  PubMed  Google Scholar 

  • Corbo JC, Fujiwara S, Levine M, Di Gregorio A (1998) Suppressor of hairless activates Brachyury expression in the Ciona embryo. Dev Biol 203:358–368

    Article  CAS  PubMed  Google Scholar 

  • Dehal P, Satou Y, Campbell RK et al (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167

    Article  CAS  PubMed  Google Scholar 

  • Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965–968

    Article  CAS  PubMed  Google Scholar 

  • Farley EK, Olson KM, Zhang W, Rokhsar DS, Levine MS (2015) Syntax compensates for poor binding sites to encode tissue specificity of developmental enhancers. Proc Natl Acad Sci U S A 113:6508–6513

    Article  Google Scholar 

  • Harvey SA, Tümpel S, Dubrulle J, Schier AF, Smith JC (2010) No tail integrates two modes of mesoderm induction. Development 137:1127–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrmann BG, Kispert A (1994) The T genes in embryogenesis. Trends Genet 10:280–286

    Article  CAS  PubMed  Google Scholar 

  • Holland PWH, Koschorz B, Holland LZ, Herrmann BG (1995) Conservation of Brachyury (T) genes in amphioxus and vertebrates: developmental and evolutionary implications. Development 121:4283–4291

    CAS  PubMed  Google Scholar 

  • Hong JW, Hendrix DA, Levine MS (2008) Shadow enhancers as a source of evolutionary novelty. Science 321:1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hozumi A, Yoshida R, Horie T, Sakuma T, Yamamoto T, Sasakura Y (2013) Enhancer activity sensitive to the orientation of the gene it regulates in the chordate genome. Dev Biol 375:79–91

    Article  CAS  PubMed  Google Scholar 

  • Imai KS, Satoh N, Satou Y (2002a) Early embryonic expression of FGF4/6/9 gene and its role in the induction of mesenchyme and notochord in Ciona savignyi embryos. Development 129:1729–1738

    CAS  PubMed  Google Scholar 

  • Imai KS, Satoh N, Satou Y (2002b) An essential role of a FoxD gene in notochord induction in Ciona embryos. Development 129:3441–3453

    CAS  PubMed  Google Scholar 

  • Imai KS, Satou Y, Satoh N (2002c) Multiple functions of a Zic-like gene in the differentiation of notochord, central nervous system and muscle in Ciona savignyi embryos. Development 129:2723–2732

    CAS  PubMed  Google Scholar 

  • Imai KS, Levine M, Satoh N, Satou Y (2006) Regulatory blueprint for a chordate embryo. Science 312:1183–1187

    Article  CAS  PubMed  Google Scholar 

  • Imai KS, Stolfi A, Levine M, Satou Y (2009) Gene regulatory networks underlying the compartmentalization of the Ciona central nervous system. Development 136:285–293

    Article  CAS  PubMed  Google Scholar 

  • Ip YT, Park RE, Kosman D, Bier E, Levine M (1992) The dorsal gradient morphogen regulates stripes of rhomboid expression in the presumptive neuroectoderm of the Drosophila embryo. Genes Dev 6:1728–1739

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi T, Nakazawa M, Ono H, Satoh N, Gojobori T, Fujiwara S (2003) Microarray analysis of embryonic retinoic acid target genes in the ascidian Ciona intestinalis. Develop Growth Differ 45:249–259

    Article  CAS  Google Scholar 

  • Ishibashi T, Usami T, Fujie M, Azumi K, Satoh N, Fujiwra S (2005) Oligonucleotide-based microarray analysis of retinoic acid target genes in the protochordate, Ciona intestinalis. Dev Dyn 233:1571–1578

    Article  CAS  PubMed  Google Scholar 

  • Kanda M, Wada H, Fujiwara S (2009) Epidermal expression of Hox1 is directly activated by retinoic acid in the Ciona intestinalis embryo. Dev Biol 335:454–463

    Article  CAS  PubMed  Google Scholar 

  • Kanda M, Ikeda T, Fujiwara S (2013) Identification of a retinoic acid-responsive neural enhancer in the Ciona intestinalis Hox1 gene. Develop Growth Differ 55:260–269

    Article  CAS  Google Scholar 

  • Kumano G, Yamaguchi S, Nishida H (2006) Overlapping expression of FoxA and Zic confers responsiveness to FGF signaling to specify notochord in ascidian embryos. Dev Biol 300:780–784

    Article  Google Scholar 

  • Latinkić BV, Umbhauer M, Neal KA, Lerchner W, Smith JC, Cunliffe V (1997) The Xenopus Brachyury promoter is activated by FGF and low concentrations of activin and suppressed by high concentrations of activin and by paired-type homeodomain proteins. Genes Dev 11:3265–3276

    Article  PubMed  PubMed Central  Google Scholar 

  • Mangelsdorf, D. J., Evans, R.M. (1992). Retinoid receptors as transcription factors. In “Transcriptional regulation” Ed by S. L. McKnight, K. R. Yamamoto. Cold Spring Harbor Laboratory Press, New York, pp 1137–1167

    Google Scholar 

  • Martí-Solans J, Belyaeva OV, Torres-Aguila NP, Kedishvili NY, Albalat R, Cañestro C (2016) Co-elimination and survival in gene network evolution: dismantling the RA-signaling in a chordate. Mol Biol Evol 33:2401–2416

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsumoto J, Kumano G, Nishida H (2007) Direct activation by Ets and Zic is required for initial expression of the Brachyury gene in the ascidian notochord. Dev Biol 306:870–882

    Article  CAS  PubMed  Google Scholar 

  • Miya T, Nishida H (2003) An Ets transcription factor, HrEts, is target of FGF signaling and involved in induction of notochord, mesenchyme, and brain in ascidian embryos. Dev Biol 261:25–38

    Article  CAS  PubMed  Google Scholar 

  • Mocikat R, Harloff C, Kütemeier G (1993) The effect of the rat immunoglobulin heavy-chain 3′ enhancer is position dependent. Gene 136:349–353

    Article  CAS  PubMed  Google Scholar 

  • Nakatani Y, Yasuo H, Satoh N, Nishida H (1996) Basic fibroblast growth factor induces notochord formation and the expression of As-T, a Brachyury homolog, during ascidian embryogenesis. Development 122:2023–2031

    CAS  PubMed  Google Scholar 

  • Natale A, Sims C, Chiusano ML, Amoroso A, D’Aniello E, Fucci L, Krumlauf R, Branno, M, Locascio A (2011) Evolution of anterior Hox regulatory elements among chordates. BMC Evol Biol 11:330

    Google Scholar 

  • Perry MW, Boettiger AN, Bothma JP, Levine M (2010) Shadow enhancers foster robustness of Drosophila gastrulation. Curr Biol 20:1562–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putnam NH, Butts T, Ferrier DEK et al (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453:1064–1072

    Article  CAS  PubMed  Google Scholar 

  • Sasakura Y, Kanda M, Ikeda T, Horie T, Kawai N, Ogura Y, Yoshida R, Hozumi A, Satoh N, Fujiwara S (2012) Retinoic acid-driven Hox1 is required in the epidermis for forming the otic/atrial placodes during ascidian metamorphosis. Development 139:2156–2160

    Article  CAS  PubMed  Google Scholar 

  • Schubert M, Yu JK, Holland ND, Escriva H, Laudet V, Holland LZ (2005) Retinoic acid signaling acts via Hox1 to establish the posterior limit of the pharynx in the chordate amphioxus. Development 132:61–73

    Article  CAS  PubMed  Google Scholar 

  • Schubert M, Holland ND, Laudet V, Holland LZ (2006) A retinoic acid-Hox hierarchy controls both anterior/posterior patterning and neuronal specification in the developing central nervous system of the cephalochordate amphioxus. Dev Biol 296:190–202

    Article  CAS  PubMed  Google Scholar 

  • Shimauchi Y, Yasuo H, Satoh N (1997) Autonomy of ascidian fork head/HNF-3 gene expression. Mech Dev 69:143–154

    Article  CAS  PubMed  Google Scholar 

  • Smith JC, Price BM, Green JB, Weigel D, Herrmann BG (1991) Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell 67:79–87

    Article  CAS  PubMed  Google Scholar 

  • Swamynathan SK, Piatigorsky J (2002) Orientation-dependent influence of an intergenic enhancer on the promoter activity of the divergently transcribed mouse Shsp/αB-crystallin and Mkbp/HspB2 genes. J Biol Chem 277:49700–49706

    Article  CAS  PubMed  Google Scholar 

  • Tsagkogeorga G, Turon X, Hopcroft RR, Tilak MK, Feldstein T, Shenkar N, Loya Y, Huchon D, Douzery EJP, Delsuc F (2009) An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models. BMC Evol Biol 9:187

    Article  PubMed  PubMed Central  Google Scholar 

  • Yagi K, Satou Y, Satoh N (2004) A zinc finger transcription factor, ZicL, is a direct activator of Brachyury in the notochord specification of Ciona intestinalis. Development 131:1279–1288

    Article  CAS  PubMed  Google Scholar 

  • Yasuo H, Satoh N (1993) Function of vertebrate T gene. Nature 364:582–583

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, K., Nakahata, A., Treen, N., Sakuma, T., Yamamoto, T., Sasakura, Y. (2017). Hox-mediated endodermal identity patterns the pharyngeal muscle formation in the chordate pharynx. Development 144:1629–1634. doi:https://doi.org/10.1242/dev.144436

  • Zeller RW (2004) Generation and use of transgenic ascidian embryos. Methods Cell Biol 74:713–730

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Chikako Imaizumi, Reiko Yoshida, Yutaka Satou, Megumi Koutsuka, and Kazuko Hirayama (NBRP) for the animals. As this review includes our unpublished results, we thank members of our group, Miyuki Kanda, Minami Tagawa, and Adriana Rodriguez-Marí. This work was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science to SF, and by the grant BFU2016-80601-P from the Ministerio de Economía y Competitividad (Spain) and SGR2014-290 from Generalitat de Catalunya to CC. Our collaborative research was supported by the Heiwa Nakajima Foundation. We also thank Zenji Imoto, Kouki Tanaka, and other members of the Usa Marine Biological Institute of Kochi University for maintenance of the aquarium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeki Fujiwara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fujiwara, S., Cañestro, C. (2018). Reporter Analyses Reveal Redundant Enhancers that Confer Robustness on Cis-Regulatory Mechanisms. In: Sasakura, Y. (eds) Transgenic Ascidians . Advances in Experimental Medicine and Biology, vol 1029. Springer, Singapore. https://doi.org/10.1007/978-981-10-7545-2_7

Download citation

Publish with us

Policies and ethics