Advertisement

The Use of cis-Regulatory DNAs as Molecular Tools

  • Kotaro Shimai
  • Takehiro G. Kusakabe
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1029)

Abstract

Ascidians possess relatively small and compact genomes. This feature enables us to easily isolate cis-regulatory DNAs of genes of interest. Particularly, cis-regulatory DNAs of genes showing tissue- or cell-type-specific expression are routinely used for the artificial induction of gene expression. This strategy helps us to label cells, tissues, and organs of interest, and to investigate gene functions through overexpression, ectopic expression, and the disruption of functions by dominant-negative forms. Thus, cis-regulatory DNAs provide a powerful tool for tissue-specific genetic manipulation in studies of ascidian development and physiology. This chapter summarizes the types of cis-regulatory DNAs as a genetic manipulation tool, describes the methods used for isolating cis-regulatory DNAs, and provide reported examples of the use of cis-regulatory DNAs as molecular tools for investigating gene functions.

Keywords

cis-regulatory DNAs Transcription Basal promoter Enhancer Overexpression Knockdown Cell lineage Ca2+ imaging 

References

  1. Abdul-Wajid S, Morales Diaz H, Khairallah SM, Smith WC (2015) T-type Calcium Channel regulation of neural tube closure and EphrinA/EPHA expression. Cell Rep 13:829–839PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abitua PB, Wagner E, Navarrete IA, Levine M (2012) Identification of a rudimentary neural crest in a non-vertebrate chordate. Nature 492:104–107PubMedPubMedCentralCrossRefGoogle Scholar
  3. Abitua PB, Gainous TB, Kaczmarczyk AN, Winchell CJ, Hudson C, Kamata K, Nakagawa M, Tsuda M, Kusakabe TG, Levine M (2015) The pre-vertebrate origins of neurogenic placodes. Nature 524:462–465PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ando R, Hama H, Yamamoto-Hino M, Mizuno H, Miyawaki A (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci U S A 99:12651–12656PubMedPubMedCentralCrossRefGoogle Scholar
  5. Arnosti DN, Preston CM, Hagmann M, Schaffner W, Hope RG, Laughlan G, Luisi BF (1993) Specific transcriptional activation in vitro by the herpes simplex virus protein VP16. Nucleic Acids Res 21:5570–5576PubMedPubMedCentralCrossRefGoogle Scholar
  6. Awazu S, Sasaki A, Matsuoka T, Satoh N, Sasakura Y (2004) An enhancer trap in the ascidian Ciona intestinalis identifies enhancers of its Musashi orthologous gene. Dev Biol 275:459–472PubMedCrossRefGoogle Scholar
  7. Awazu S, Matsuoka T, Inaba K, Satoh N, Sasakura Y (2007) High-throughput enhancer trap by remobilization of transposon Minos in Ciona intestinalis. Genesis 45:307–317PubMedCrossRefGoogle Scholar
  8. Beh J, Shi W, Levine M, Davidson B, Christiaen L (2007) FoxF is essential for FGF-induced migration of heart progenitor cells in the ascidian Ciona intestinalis. Development 134:3297–3305PubMedCrossRefGoogle Scholar
  9. Bertrand V, Hudson C, Caillol D, Popovici C, Lemaire P (2003) Neural tissue in ascidian embryos is induced by FGF9/16/20, acting via a combination of maternal GATA and Ets transcription factors. Cell 115:615–627PubMedCrossRefGoogle Scholar
  10. Boffelli D, Weer CV, Weng L, Lewis KD, Shoukry MI, Pachter L, Keys DN, Rubin EM (2004) Intraspecies sequence comparisons for annotating genomes. Genome Res 14:2406–2411PubMedPubMedCentralCrossRefGoogle Scholar
  11. Brozovic M, Martin C, Dantec C, Dauga D, Mendez M, Simion P, Percher M, Laporte B, Scornavacca C, Di Gregorio A, Fujiwara S, Gineste M, Lowe EK, Piette J, Racioppi C, Ristoratore F, Sasakura Y, Takatori N, Brown TC, Delsuc F, Douzery E, Gissi C, McDougall A, Nishida H, Sawada H, Swalla BJ, Yasuo H, Lemaire P (2016) ANISEED 2015: a digital framework for the comparative developmental biology of ascidians. Nucleic Acids Res 44:D808–D818PubMedCrossRefGoogle Scholar
  12. Christiaen L, Bourrat F, Joly J-S (2005) A modular cis-regulatory system controls isoform-specific pitx expression in ascidian stomodaeum. Dev Biol 277:557–566PubMedCrossRefGoogle Scholar
  13. Christiaen L, Davidson B, Kawashima T, Powell W, Nolla H, Vranizan K, Levine M (2008) The transcription/migration interface in heart precursors of Ciona intestinalis. Science 320:1349–1352PubMedCrossRefGoogle Scholar
  14. Christiaen L, Stolfi A, Davidson B, Levine M (2009) Spatio-temporal intersection of Lhx3 and Tbx6 defines the cardiac field through synergistic activation of Mesp. Dev Biol 328:552–560PubMedCrossRefGoogle Scholar
  15. Cooley J, Whitaker S, Sweeney S, Fraser S, Davidson B (2011) Cytoskeletal polarity mediates localized induction of the heart progenitor lineage. Nat Cell Biol 13:952–957PubMedPubMedCentralCrossRefGoogle Scholar
  16. Corbo JC, Levine M, Zeller RW (1997) Characterization of a notochord-specific enhancer from the Brachyury promoter region of the ascidian, Ciona intestinalis. Development 124:589–602PubMedGoogle Scholar
  17. Corbo JC, Fujiwara S, Levine M, Di Gregorio A (1998) Suppressor of hairless activates brachyury expression in the Ciona embryo. Dev Biol 203:358–368PubMedCrossRefGoogle Scholar
  18. Corbo JC, Di Gregorio A, Levine M (2001) The ascidian as a model organism in developmental and evolutionary biology. Cell 106:535–538PubMedCrossRefGoogle Scholar
  19. Das G, Henning D, Wright D, Reddy R (1988) Upstream regulatory elements are necessary and sufficient for transcription of a U6 RNA gene by RNA polymerase III. EMBO J 7:503–512PubMedPubMedCentralGoogle Scholar
  20. Davidson B, Levine M (2003) Evolutionary origins of the vertebrate heart: specification of the cardiac lineage in Ciona intestinalis. Proc Natl Acad Sci U S A 100:11469–11473PubMedPubMedCentralCrossRefGoogle Scholar
  21. Davidson B, Shi W, Levine M (2005) Uncoupling heart cell specification and migration in the simple chordate Ciona intestinalis. Development 132:4811–4818PubMedCrossRefGoogle Scholar
  22. Davidson B, Shi W, Beh J, Christiaen L, Levine M (2006) FGF signaling delineates the cardiac progenitor field in the simple chordate, Ciona intestinalis. Genes Dev 20:2728–2738PubMedPubMedCentralCrossRefGoogle Scholar
  23. Deguchi T, Itoh M, Urawa H, Matsumoto T, Nakayama S, Kawasaki T, Kitano T, Oda S, Mitani H, Takahashi T, Todo T, Sato J, Okada K, Hatta K, Yuba S, Kamei Y (2009) Infrared laser-mediated local gene induction in medaka, zebrafish and Arabidopsis thaliana. Develop Growth Differ 51:769–775CrossRefGoogle Scholar
  24. Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B et al (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167PubMedCrossRefGoogle Scholar
  25. Di Gregorio A, Levine M (1999) Regulation of Ci-tropomyosin-like, a Brachyury target gene in the ascidian, Ciona intestinalis. Development 126:5599–5609PubMedGoogle Scholar
  26. Di Gregorio A, Corbo JC, Levine M (2001) The regulation of forkhead/HNF-3beta expression in the Ciona embryo. Dev Biol 229:31–43PubMedCrossRefGoogle Scholar
  27. Di Gregorio A, Harland RM, Levine M, Casey ES (2002) Tail morphogenesis in the ascidian, Ciona intestinalis, requires cooperation between notochord and muscle. Dev Biol 244:385–395PubMedCrossRefGoogle Scholar
  28. Di Gregorio A, Levine M (2002) Analyzing gene regulation in ascidian embryos: new tools for new perspectives. Differentiation 70:132–139Google Scholar
  29. Dufour HD, Chettouh Z, Deyts C, de Rosa R, Goridis C, Joly JS, Brunet JF (2006) Precraniate origin of cranial motoneurons. Proc Natl Acad Sci U S A 103:8727–8732PubMedPubMedCentralCrossRefGoogle Scholar
  30. Erives A, Corbo JC, Levine M (1998) Lineage-specific regulation of the Ciona snail gene in the embryonic mesoderm and neuroectoderm. Dev Biol 194:213–225PubMedCrossRefGoogle Scholar
  31. Fanelli A, Lania G, Spagnuolo A, Di Lauro R (2003) Interplay of negative and positive signals controls endoderm-specific expression of the ascidian Cititf1 gene promoter. Dev Biol 263:12–23PubMedCrossRefGoogle Scholar
  32. Fisher AL, Ohsako S, Caudy M (1996) The WRPW motif of the hairy-related basic helix-loop-helix repressor proteins acts as a 4-amino-acid transcription repression and protein-protein interaction domain. Mol Cell Biol 16:2670–2677PubMedPubMedCentralCrossRefGoogle Scholar
  33. Fujiwara S, Corbo JC, Levine M (1998) The snail repressor establishes a muscle/notochord boundary in the Ciona embryo. Development 125:2511–2520PubMedGoogle Scholar
  34. Gandhi S, Haeussler M, Razy-Krajka F, Christiaen L, Stolfi A (2017) Evaluation and rational design of guide RNAs for efficient CRISPR/Cas9-mediated mutagenesis in Ciona. Dev Biol 425:8–20PubMedCrossRefGoogle Scholar
  35. Hackley C, Mulholland E, Kim GJ, Newman-Smith E, Smith WC (2013) A transiently expressed connexin is essential for anterior neural plate development in Ciona intestinalis. Development 140:147–155PubMedPubMedCentralCrossRefGoogle Scholar
  36. Harafuji N, Keys DN, Levine M (2002) Genome-wide identification of tissue-specific enhancers in the Ciona tadpole. Proc Natl Acad Sci U S A 99:6802–6805PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hikosaka A, Kusakabe T, Satoh N, Makabe KW (1992) Introduction and expression of recombinant genes in ascidian embryos. Develop Growth Differ 34:627–634CrossRefGoogle Scholar
  38. Hikosaka A, Kusakabe T, Satoh N (1994) Short upstream sequences associated with the muscle-specific expression of an actin gene in ascidian embryos. Dev Biol 166:763–769Google Scholar
  39. Horie T, Kusakabe T, Tsuda M (2008) Glutamatergic networks in the Ciona intestinalis Larva. J Comp Neurol 508:249–263PubMedCrossRefGoogle Scholar
  40. Horie T, Nakagwa M, Sasakura Y, Kusakabe TG (2009) Cell type and function of neurons in the ascidian nervous system. Develop Growth Differ 51:207–220CrossRefGoogle Scholar
  41. Horie T, Nakagawa M, Sasakura Y, Kusakabe TG, Tsuda M (2010) Simple motor system of the ascidian larva: neuronal complex comprising putative cholinergic neurons and GABAergic/glycinergic neurons. Zool Sci 27:181–190PubMedCrossRefGoogle Scholar
  42. Horie T, Shinki R, Ogura Y, Kusakabe TG, Satoh N, Sasakura Y (2011) Ependymal cells of chordate larvae are stem-like cells that form the adult nervous system. Nature 469:525–528PubMedCrossRefGoogle Scholar
  43. Hozumi A, Kawai N, Yoshida R, Ogura Y, Ohta N, Satake H, Satoh N, Sasakura Y (2010) Efficient transposition of a single Minos transposon copy in the genome of the ascidian Ciona intestinalis with a transgenic line expressing transposase in eggs. Dev Dynam 239:1076–1088CrossRefGoogle Scholar
  44. Hozumi A, Yoshida R, Horie T, Sakuma T, Yamamoto T, Sasakura Y (2013) Enhancer activity sensitive to the orientation of the gene it regulates in the chordate genome. Dev Biol 375:79–91PubMedCrossRefGoogle Scholar
  45. Hozumi A, Horie T, Sasakura Y (2015) Neuronal map reveals the highly regionalized pattern of the juvenile central nervous system of the ascidian Ciona intestinalis. Dev Dynam 244:1375–1393CrossRefGoogle Scholar
  46. Iitsuka T, Mita K, Hozumi A, Hamada M, Satoh N, Sasakura Y (2014) Transposon-mediated targeted and specific knockdown of maternally expressed transcripts in the ascidian Ciona intestinalis. Sci Rep 4:5050PubMedPubMedCentralCrossRefGoogle Scholar
  47. Imai JH, Meinertzhagen IA (2007a) Neurons of the ascidian larval nervous system in Ciona intestinalis. I. Central nervous system. J Comp Neurol 501:316–334PubMedCrossRefGoogle Scholar
  48. Imai JH, Meinertzhagen IA (2007b) Neurons of the ascidian larval nervous system in Ciona intestinalis. II. Peripheral nervous system. J Comp Neurol 501:335–352PubMedCrossRefGoogle Scholar
  49. Imai K, Takada N, Satoh N, Satou Y (2000) β-catenin mediates the specification of endoderm cells in ascidian embryos. Development 127:3009–3020PubMedGoogle Scholar
  50. Imai KS, Hino K, Yagi K, Satoh N, Satou Y (2004) Gene expression profiles of transcription factors and signaling molecules in the ascidian embryo: towards a comprehensive understanding of gene networks. Development 131:4047–4058PubMedCrossRefGoogle Scholar
  51. Imai KS, Levine M, Satoh N, Satou Y (2006) Regulatory blueprint for a chordate embryo. Science 312:1183–1187PubMedCrossRefGoogle Scholar
  52. Imai KS, Stolfi A, Levine M, Satou Y (2009) Gene regulatory networks underlying the compartmentalization of the Ciona central nervous system. Development 136:285–293Google Scholar
  53. Irvine SQ, Fonseca VC, Zompa MA, Antony R (2008) Cis-regulatory organization of the Pax6 gene in the ascidian Ciona intestinalis. Dev Biol 317:649–659PubMedPubMedCentralCrossRefGoogle Scholar
  54. Johnson DS, Davidson B, Brown CD, Smith WC, Sidow A (2004) Noncoding regulatory sequences of Ciona exhibit strong correspondence between evolutionary constraint and functional importance. Genome Res 14:2448–2456PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kamei Y, Suzuki M, Watanabe K, Fujimori K, Kawasaki T, Deguchi T, Yoneda Y, Todo T, Takagi S, Funatsu T, Yuba S (2009) Infrared laser-mediated gene induction in targeted single cells in vivo. Nat Methods 6:79–81PubMedCrossRefGoogle Scholar
  56. Kari W, Zeng F, Zitzelsberger L, Will J, Rothbächer U (2016) Embryo microinjection and electroporation in the chordate Ciona intestinalis. J Vis Exp:e54313–e54313Google Scholar
  57. Katsuyama Y, Matsumoto J, Okada T, Ohtsuka Y, Chen L, Okado H, Okamura Y (2002) Regulation of synaptotagmin gene expression during ascidian embryogenesis. Dev Biol 244:293–304PubMedCrossRefGoogle Scholar
  58. Katsuyama Y, Okada T, Matsumoto J, Ohtsuka Y, Terashima T, Okamura Y (2005) Early specification of ascidian larval motor neurons. Dev Biol 278:310–322PubMedCrossRefGoogle Scholar
  59. Kawaguchi A, Utsumi N, Morita M, Ohya A, Wada S (2015) Application of the cis-regulatory region of a heat-shock protein 70 gene to heat-inducible gene expression in the ascidian Ciona intestinalis. Genesis 53:170–182PubMedCrossRefGoogle Scholar
  60. Kawai N, Takahashi H, Nishida H, Yokosawa H (2005) Regulation of NF-κB/Rel by IκB is essential for ascidian notochord formation. Dev Biol 277:80–91PubMedCrossRefGoogle Scholar
  61. Kawai N, Ogura Y, Ikuta T, Saiga H, Hamada M, Sakuma T, Yamamoto T, Satoh N, Sasakura Y (2015) Hox10-regulated endodermal cell migration is essential for development of the ascidian intestine. Dev Biol 403:43–56PubMedCrossRefGoogle Scholar
  62. Keys DN, Levine M, Harland RM, Wallingford JB (2002) Control of intercalation is cell-autonomous in the notochord of Ciona intestinalis. Dev Biol 246:329–340PubMedCrossRefGoogle Scholar
  63. Keys DN, Lee BI, Di Gregorio A, Harafuji N, Detter JC, Wang M, Kahsai O, Ahn S, Zhang C, Doyle SA, Satoh N, Satou Y, Saiga H, Christian AT, Rokhsar DS, Hawkins TL, Levine M, Richardson PM (2005) A saturation screen for cis-acting regulatory DNA in the Hox genes of Ciona intestinalis. Proc Natl Acad Sci U S A 102:679–683PubMedPubMedCentralCrossRefGoogle Scholar
  64. Kozak (1987) An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15:8125–8148PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kusakabe T (2005) Decoding cis-regulatory systems in ascidians. Zool Sci 22:129–146PubMedCrossRefGoogle Scholar
  66. Kusakabe TG (2017) Identifying vertebrate brain prototypes in deuterostomes. In: Shigeno S, Murakami Y, Nomura T (eds) Brain evolution by design. Springer Japan, Tokyo, pp 153–186CrossRefGoogle Scholar
  67. Kusakabe T, Makabe KW, Satoh N (1992) Tunicate muscle actin genes. Structure and organization as a gene cluster. J Mol Biol 227:955–960PubMedCrossRefGoogle Scholar
  68. Kusakabe T, Hikosaka A, Satoh N (1995) Coexpression and promoter function in two muscle actin gene complexes of different structural organization in the ascidian Halocynthia roretzi. Dev Biol 169:461–472PubMedCrossRefGoogle Scholar
  69. Kusakabe T, Yoshida R, Ikeda Y, Tsuda M (2004) Computational discovery of DNA motifs associated with cell type-specific gene expression in Ciona. Dev Biol 276:563–580PubMedCrossRefGoogle Scholar
  70. Kusakabe TG, Sakai T, Aoyama M, Kitajima Y, Miyamoto Y, Takigawa T, Daido Y, Fujiwara K, Terashima Y, Sugiuchi Y, Matassi G, Yagisawa H, Park MK, Satake H, Tsuda M (2012) A conserved non-reproductive GnRH system in chordates. PLoS One 7:e41955PubMedPubMedCentralCrossRefGoogle Scholar
  71. Matsumoto J, Katsuyama Y, Ohtsuka Y, Lemaire P, Okamura Y (2008) Functional analysis of synaptotagmin gene regulatory regions in two distantly related ascidian species. Develop Growth Differ 50:543–552Google Scholar
  72. Matsuoka T, Awazu S, Satoh N, Sasakura Y (2004) Minos transposon causes germline transgenesis of the ascidian Ciona savignyi. Develop Growth Differ 46:249–255CrossRefGoogle Scholar
  73. Meinertzhagen IA, Lemaire P, Okamura Y (2004) The neurobiology of the ascidian tadpole larva: recent developments in an ancient chordate. Annu Rev Neurosci 27:453–485PubMedCrossRefGoogle Scholar
  74. Mitani Y, Takahashi H, Satoh N (2001) Regulation of the muscle-specific expression and function of an ascidian T-box gene, As-T2. Development 128:3717–3728PubMedGoogle Scholar
  75. Miyagishi M, Taira K (2002) U6 promoter-driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol 20:497–500PubMedCrossRefGoogle Scholar
  76. Nakazawa K, Yamazawa T, Moriyama Y, Ogura Y, Kawai N, Sasakura Y, Saiga H (2013) Formation of the digestive tract in Ciona intestinalis includes two distinct morphogenic processes between its anterior and posterior parts. Dev Dynam 242:1172–1183CrossRefGoogle Scholar
  77. Navarrete IA, Levine M (2016) Nodal and FGF coordinate ascidian neural tube morphogenesis. Development 143:4665–4675PubMedPubMedCentralCrossRefGoogle Scholar
  78. Nishino A, Okamura Y, Piscopo S, Brown ER (2010) A glycine receptor is involved in the organization of swimming movements in an invertebrate chordate. BMC Neurosci 11:6PubMedPubMedCentralCrossRefGoogle Scholar
  79. Nishiyama A, Fujiwara S (2008) RNA interference by expressing short hairpin RNA in the Ciona intestinalis embryo. Develop Growth Differ 50:521–529CrossRefGoogle Scholar
  80. Oda-Ishii I, Bertrand V, Matsuo I, Lemaire P, Saiga H (2005) Making very similar embryos with divergent genomes: conservation of regulatory mechanisms of Otx between the ascidians Halocynthia roretzi and Ciona intestinalis. Development 132:1663–1674PubMedCrossRefGoogle Scholar
  81. Ogura Y, Sakaue-Sawano A, Nakagawa M, Satoh N, Miyawaki A, Sasakura Y (2011) Coordination of mitosis and morphogenesis: role of a prolonged G2 phase during chordate neurulation. Development 138:577–587PubMedCrossRefGoogle Scholar
  82. Okada T, MacIsaac SS, Katsuyama Y, Okamura Y, Meinertzhagen IA (2001) Neuronal form in the central nervous system of the tadpole larva of the ascidian Ciona intestinalis. Biol Bull 200:252–256PubMedCrossRefGoogle Scholar
  83. Okada T, Katsuyama Y, Ono F, Okamura Y (2002) The development of three identified motor neurons in the larva of an ascidian, Halocynthia roretzi. Dev Biol 244:278–292PubMedCrossRefGoogle Scholar
  84. Okagaki R, Izumi H, Okada T, Nagahora H, Nakajo K, Okamura Y (2001) The maternal transcript for truncated voltage-dependent Ca2+ channels in the ascidian embryo: a potential suppressive role in Ca2+ channel expression. Dev Biol 230:258–277PubMedCrossRefGoogle Scholar
  85. Ono F, Katsuyama Y, Nakajo K, Okamura Y (1999) Subfamily-specific posttranscriptional mechanism underlies K+ channel expression in a developing neuronal blastomere. J Neurosci 19:6874–6886PubMedGoogle Scholar
  86. Oonuma K, Tanaka M, Nishitsuji K, Kato Y, Shimai K, Kusakabe TG (2016) Revised lineage of larval photoreceptor cells in Ciona reveals archetypal collaboration between neural tube and neural crest in sensory organ formation. Dev Biol 420:178–185PubMedCrossRefGoogle Scholar
  87. Pasini A, Amiel A, Rothbächer U, Roure A, Lemaire P, Darras S (2006) Formation of the ascidian epidermal sensory neurons: insights into the origin of the chordate peripheral nervous system. PLoS Biol 4:e225PubMedPubMedCentralCrossRefGoogle Scholar
  88. Razy-Krajka F, Brown ER, Horie T, Callebert J, Sasakura Y, Joly J-S, Kusakabe TG, Vernier P (2012) Monoaminergic modulation of photoreception in ascidian: evidence for a proto-hypothalamo-retinal territory. BMC Biol 10:45PubMedPubMedCentralCrossRefGoogle Scholar
  89. Razy-Krajka F, Lam K, Wang W, Stolfi A, Joly M, Bonneau R, Christiaen L (2014) Collier/OLF/EBF-dependent transcriptional dynamics control pharyngeal muscle specification from primed Cardiopharyngeal progenitors. Dev Cell 29:263–276PubMedPubMedCentralCrossRefGoogle Scholar
  90. Rhee JM, Pirity MK, Lackan CS, Long JZ, Kondoh G, Takeda J, Hadjantonakis A-K (2006) In vivo imaging and differential localization of lipid-modified GFP-variant fusions in embryonic stem cells and mice. Genesis 44:202–218PubMedPubMedCentralCrossRefGoogle Scholar
  91. Ristoratore F, Spagnuolo A, Aniello F, Branno M, Fabbrini F, Di Lauro R (1999) Expression and functional analysis of Cititf1, an ascidian NK-2 class gene, suggest its role in endoderm development. Development 126:5149–5159Google Scholar
  92. Rothbächer U, Bertrand V, Lamy C, Lemaire P (2007) A combinatorial code of maternal GATA, Ets and β-catenin-TCF transcription factors specifies and patterns the early ascidian ectoderm. Development 134:4023–4032PubMedCrossRefGoogle Scholar
  93. Roure A, Rothbächer U, Robin F, Kalmar E, Ferone G, Lamy C, Missero C, Mueller F, Lemaire P (2007) A multicassette gateway vector set for high throughput and comparative analyses in Ciona and vertebrate embryos. PLoS One 2:e916PubMedPubMedCentralCrossRefGoogle Scholar
  94. Russo MT, Donizetti A, Locascio A, D'Aniello S, Amoroso A, Aniello F, Fucci L, Branno M (2004) Regulatory elements controlling Ci-msxb tissue-specific expression during Ciona intestinalis embryonic development. Dev Biol 267:517–528PubMedCrossRefGoogle Scholar
  95. Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H, Kashiwagi S, Fukami K, Miyata T, Miyoshi H, Imamura T, Ogawa M, Masai H, Miyawaki A (2008) Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132:487–498PubMedCrossRefGoogle Scholar
  96. Sasaki H, Yoshida K, Hozumi A, Sasakura Y (2014) CRISPR/Cas9-mediated gene knockout in the ascidian Ciona intestinalis. Develop Growth Differ 56:499–510CrossRefGoogle Scholar
  97. Sasakura Y, Awazu S, Chiba S, Satoh N (2003) Germ-line transgenesis of the Tc1/mariner superfamily transposon Minos in Ciona intestinalis. Proc Natl Acad Sci U S A 100:7726–7730PubMedPubMedCentralCrossRefGoogle Scholar
  98. Sasakura Y, Nakashima K, Awazu S, Matsuoka T, Nakayama A, Azuma J-I, Satoh N (2005) Transposon-mediated insertional mutagenesis revealed the functions of animal cellulose synthase in the ascidian Ciona intestinalis. Proc Natl Acad Sci U S A 102:15134–15139PubMedPubMedCentralCrossRefGoogle Scholar
  99. Sasakura Y, Konno A, Mizuno K, Satoh N, Inaba K (2008) Enhancer detection in the ascidian Ciona intestinalis with transposase-expressing lines of Minos. Dev Dynam 237:39–50CrossRefGoogle Scholar
  100. Sasakura Y, Inaba K, Satoh N, Kondo M, Akasaka K (2009) Ciona intestinalis and Oxycomanthus japonicus, representatives of marine invertebrates. Exp Anim 58:459–469PubMedCrossRefGoogle Scholar
  101. Sasakura Y, Suzuki MM, Hozumi A, Inaba K, Satoh N (2010) Maternal factor-mediated epigenetic gene silencing in the ascidian Ciona intestinalis. Mol Gen Genomics 283:99–110CrossRefGoogle Scholar
  102. Sasakura Y, Sierro N, Nakai K, Inaba K, Kusakabe TG (2012a) Genome structure, functional genomics, and proteomics in ascidians. In: Denny P, Kole C (eds) Genome mapping and genomics in laboratory animals: genome mapping and genomics in animals, vol 4. Springer, Berlin/Heidelberg, pp 87–132Google Scholar
  103. Sasakura Y, Mita K, Ogura Y, Horie T (2012b) Ascidians as excellent chordate models for studying the development of the nervous system during embryogenesis and metamorphosis. Develop Growth Differ 54:420–437CrossRefGoogle Scholar
  104. Sato Y, Morisawa M (1999) Loss of test cells leads to the formation of new tunic surface cells and abnormal metamorphosis in larvae of Ciona intestinalis (Chordata, ascidiacea). Dev Genes Evol 209:592–600PubMedCrossRefGoogle Scholar
  105. Satoh G, Harada Y, Satoh N (2000) The expression of nonchordate deuterostome Brachyury genes in the ascidian Ciona embryo can promote the differentiation of extra notochord cells. Mech Dev 96:155–163PubMedCrossRefGoogle Scholar
  106. Satou Y, Kawashima T, Shoguchi E, Nakayama A, Satoh N (2005) An integrated database of the ascidian, Ciona intestinalis: towards functional genomics. Zool Sci 22:837–843PubMedCrossRefGoogle Scholar
  107. Satou Y, Mineta K, Ogasawara M, Sasakura Y, Shoguchi E, Ueno K, Yamada L, Matsumoto J, Wasserscheid J, Dewar K, Wiley GB, Macmil SL, Roe BA, Zeller RW, Hastings KEM, Lemaire P, Lindquist E, Endo T, Hotta K, Inaba K (2008) Improved genome assembly and evidence-based global gene model set for the chordate Ciona intestinalis: new insight into intron and operon populations. Genome Biol 9:R152PubMedPubMedCentralCrossRefGoogle Scholar
  108. Shi W, Levine M (2008) Ephrin signaling establishes asymmetric cell fates in an endomesoderm lineage of the Ciona embryo. Development 135:931–940PubMedCrossRefGoogle Scholar
  109. Shi W, Peyrot SM, Munro E, Levine M (2009) FGF3 in the floor plate directs notochord convergent extension in the Ciona tadpole. Development 136:23–28Google Scholar
  110. Shimai K, Hirano A, Kitaura Y, Kitano Y, Itoh A, Kiuchi A, Sasaki N, Nishikata T (2008) Novel ubiquitous promoters and expression-vector optimization in ascidian embryos. Inv Reprod Dev 51:103–110CrossRefGoogle Scholar
  111. Shimai K, Kitaura Y, Tamari Y, Nishikata T (2010) Upstream regulatory sequences required for specific gene expression in the ascidian neural tube. Zool Sci 27:76–83PubMedCrossRefGoogle Scholar
  112. Shimeld SM, Levin M (2006) Evidence for the regulation of left-right asymmetry in Ciona intestinalis by ion flux. Dev Dynam 235:1543–1553CrossRefGoogle Scholar
  113. Shimeld SM, Purkiss AG, Dirks RPH, Bateman OA, Slingsby C, Lubsen NH (2005) Urochordate βγ-crystallin and the evolutionary origin of the vertebrate eye lens. Curr Biol 15:1684–1689PubMedCrossRefGoogle Scholar
  114. Sierro N, Kusakabe T, Park K-J, Yamashita R, Kinoshita K, Nakai K (2006) DBTGR: a database of tunicate promoters and their regulatory elements. Nucleic Acids Res 34:D552–D555PubMedCrossRefGoogle Scholar
  115. Stolfi A, Levine M (2011) Neuronal subtype specification in the spinal cord of a protovertebrate. Development 138:995–1004PubMedCrossRefGoogle Scholar
  116. Stolfi A, Gainous TB, Young JJ, Mori A, Levine M, Christiaen L (2010) Early chordate origins of the vertebrate second heart field. Science 329:565–568PubMedPubMedCentralCrossRefGoogle Scholar
  117. Stolfi A, Gandhi S, Salek F, Christiaen L (2014) Tissue-specific genome editing in Ciona embryos by CRISPR/Cas9. Development 141:4115–4120PubMedPubMedCentralCrossRefGoogle Scholar
  118. Stolfi A, Ryan K, Meinertzhagen IA, Christiaen L (2015a) Migratory neuronal progenitors arise from the neural plate borders in tunicates. Nature 527:371–374PubMedPubMedCentralCrossRefGoogle Scholar
  119. Stolfi A, Sasakura Y, Chalopin D, Satou Y, Christiaen L, Dantec C, Endo T, Naville M, Nishida H, Swalla BJ, Volff JN, Voskoboynik A, Dauga D, Lemaire P (2015b) Guidelines for the nomenclature of genetic elements in tunicate genomes. Genesis 53:19–14CrossRefGoogle Scholar
  120. Takahashi H, Hotta K, Erives A, Di Gregorio A, Zeller RW, Levine M, Satoh N (1999a) Brachyury downstream notochord differentiation in the ascidian embryo. Genes Dev 13:1519–1523PubMedPubMedCentralCrossRefGoogle Scholar
  121. Takahashi H, Mitani Y, Satoh G, Satoh N (1999b) Evolutionary alterations of the minimal promoter for notochord-specific Brachyury expression in ascidian embryos. Development 126:3725–3734PubMedGoogle Scholar
  122. Takamura K, Minamida N, Okabe S (2010) Neural map of the larval central nervous system in the ascidian Ciona intestinalis. Zool Sci 27:191–203PubMedCrossRefGoogle Scholar
  123. Tassy O, Dauga D, Daian F, Sobral D, Robin F, Khoueiry P, Salgado D, Fox V, Caillol D, Schiappa R, Laporte B, Rios A, Luxardi G, Kusakabe T, Joly J-S, Darras S, Christiaen L, Contensin M, Auger H, Lamy C, Hudson C, Rothbächer U, Gilchrist MJ, Makabe KW, Hotta K, Fujiwara S, Satoh N, Satou Y, Lemaire P (2010) The ANISEED database: digital representation, formalization, and elucidation of a chordate developmental program. Genome Res 20:1459–1468PubMedPubMedCentralCrossRefGoogle Scholar
  124. Treen N, Yoshida K, Sakuma T, Sasaki H, Kawai N, Yamamoto T, Sasakura Y (2014) Tissue-specific and ubiquitous gene knockouts by TALEN electroporation provide new approaches to investigating gene function in Ciona. Development 141:481–487PubMedCrossRefGoogle Scholar
  125. Tuschl T (2002) Expanding small RNA interference. Nat Biotechnol 20:446–448PubMedCrossRefGoogle Scholar
  126. Ueki T, Satoh N (1995) Sequence motifs shared by the 5′ flanking regions of two epidermis-specific genes in the ascidian embryo. Develop Growth Differ 37:597–604Google Scholar
  127. Vandenberghe AE, Meedel TH, Hastings KE (2001) mRNA 5′-leader trans-splicing in the chordates. Genes Dev 15:294–303PubMedPubMedCentralCrossRefGoogle Scholar
  128. Vinson JP, Jaffe DB, O'Neill K, Karlsson EK, Stange-Thomann N, Anderson S, Mesirov JP, Satoh N, Satou Y, Nusbaum C, Birren B, Galagan JE, Lander ES (2005) Assembly of polymorphic genomes: algorithms and application to Ciona savignyi. Genome Res 15:1127–1135PubMedPubMedCentralCrossRefGoogle Scholar
  129. Wagner E, Levine M (2012) FGF signaling establishes the anterior border of the Ciona neural tube. Development 139:2351–2359PubMedCrossRefGoogle Scholar
  130. Wagner E, Stolfi A, Choi YG, Levine M (2014) Islet is a key determinant of ascidian palp morphogenesis. Development 141:3084–3092PubMedPubMedCentralCrossRefGoogle Scholar
  131. Wang W, Christiaen L (2012) Transcriptional enhancers in ascidian development. Curr Top Dev Biol 98:147–172PubMedCrossRefGoogle Scholar
  132. Yagi K, Satou Y, Satoh N (2004) A zinc finger transcription factor, ZicL, is a direct activator of Brachyury in the notochord specification of Ciona intestinalis. Development 131:1279–1288Google Scholar
  133. Yoshida R, Sakurai D, Horie T, Kawakami I, Tsuda M, Kusakabe T (2004) Identification of neuron-specific promoters in Ciona intestinalis. Genesis 39:130–140PubMedCrossRefGoogle Scholar
  134. Zeller RW (2004) Generation and use of transgenic ascidian embryos. Methods Cell Biol 74:713–730PubMedCrossRefGoogle Scholar
  135. Zhang F, Wang L-P, Boyden ES, Deisseroth K (2006) Channelrhodopsin-2 and optical control of excitable cells. Nat Methods 3:785–792PubMedCrossRefGoogle Scholar
  136. Zhang F, Wang L-P, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute for Integrative NeurobiologyKonan UniversityKobeJapan
  2. 2.Institute for Integrative Neurobiology & Department of Biology, Faculty of Science and EngineeringKonan UniversityKobeJapan

Personalised recommendations