Skip to main content

Electroporation in Ascidians: History, Theory and Protocols

  • Chapter
  • First Online:
Transgenic Ascidians

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1029))

Abstract

Embryonic development depends on the orchestration of hundreds of regulatory and structural genes to initiate expression at the proper time, in the correct spatial domain(s), and in the amounts required for cells and tissues to become specified, determined, and ultimately to differentiate into a multicellular embryo. One of the key approaches to studying embryonic development is the generation of transgenic animals in which recombinant DNA molecules are transiently or stably introduced into embryos to alter gene expression, to manipulate gene function or to serve as reporters for specific cell types or subcellular compartments. In some model systems, such as the mouse, well-defined approaches for generating transgenic animals have been developed. In other systems, particularly non-model systems, a key challenge is to find a way of introducing molecules or other reagents into cells that produces large numbers of embryos with a minimal effect on normal development. A variety of methods have been developed, including the use of viral vectors, microinjection, and electroporation. Here, I describe how electroporation was adapted to generate transgenic embryos in the ascidian, a nontraditional invertebrate chordate model that is particularly well-suited for studying gene regulatory activity during development. I present a review of the electroporation process, describe how electroporation was first implemented in the ascidian, and provide a series of protocols describing the electroporation process, as implemented in our laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arezzo F (1989) Sea urchin sperm as a vector of foreign genetic information. Cell Biol Int Rep 13(4):391–404

    Article  CAS  Google Scholar 

  • Borei HG, Bjorklund U (1953) Effect of versene on sea urchin eggs. Exp Cell Res 5(1):216–219

    Article  CAS  PubMed  Google Scholar 

  • Brinster RL, Sandgren EP et al (1989) No simple solution for making transgenic mice. Cell 59(2):239–241

    Article  CAS  PubMed  Google Scholar 

  • Brown CD, Johnson DS et al (2007) Functional architecture and evolution of transcriptional elements that drive gene coexpression. Science 317(5844):1557–1560

    Article  CAS  PubMed  Google Scholar 

  • Bullmann T, Arendt T et al (2015) A transportable, inexpensive electroporator for in utero electroporation. Dev Growth Differ 57(5):369–377

    Google Scholar 

  • Cerda GA, Thomas JE et al (2006) Electroporation of DNA, RNA, and morpholinos into zebrafish embryos. Methods 39(3):207–211

    Article  CAS  PubMed  Google Scholar 

  • Chen JS, Pedro MS et al (2011) miR-124 function during Ciona intestinalis neuronal development includes extensive interaction with the Notch signaling pathway. Development 138(22):4943–4953

    Article  CAS  PubMed  Google Scholar 

  • Christiaen L, Wagner E, et al (2009a) Electroporation of transgenic DNAs in the sea squirt Ciona. Cold Spring Harb Protoc 2009(12):pdb prot5345

    Google Scholar 

  • Christiaen L, Wagner E et al (2009b) Microinjection of morpholino oligos and RNAs in sea squirt (Ciona) embryos. Cold Spring Harb Protoc 2009(12):pdb prot5347

    Google Scholar 

  • Corbo JC, Levine M et al (1997) Characterization of a notochord-specific enhancer from the Brachyury promoter region of the ascidian, Ciona Intestinalis. Development 124(3):589–602

    CAS  PubMed  Google Scholar 

  • Crowther RJ, Whittaker JR (1983) Developmental autonomy of muscle fine structure in muscle lineage cells of ascidian embryos. Dev Biol 96(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Di Gregorio AD, Levine M (2002) Analyzing gene regulation in ascidian embryos: new tools for new perspectives. Differentiation 70(4–5):132–139

    Article  PubMed  Google Scholar 

  • Erives A, Corbo JC et al (1998) Lineage-specific regulation of the Ciona snail gene in the embryonic mesoderm and neuroectoderm. Dev Biol 194(2):213–225

    Article  CAS  PubMed  Google Scholar 

  • Escoffre JM, Portet T et al (2009) What is (still not) known of the mechanism by which electroporation mediates gene transfer and expression in cells and tissues. Mol Biotechnol 41(3):286–295

    Article  CAS  PubMed  Google Scholar 

  • Falk J, Drinjakovic J et al (2007) Electroporation of cDNA/Morpholinos to targeted areas of embryonic CNS in Xenopus. BMC Dev Biol 7:107

    Article  PubMed  PubMed Central  Google Scholar 

  • Flytzanis CN, McMahon AP et al (1985) Persistence and integration of cloned DNA in postembryonic sea urchins. Dev Biol 108(2):431–442

    Article  CAS  PubMed  Google Scholar 

  • Franks RR, Hough-Evans BR et al (1988) Direct introduction of cloned DNA into the sea urchin zygote nucleus, and fate of injected DNA. Development 102(2):287–299

    CAS  PubMed  Google Scholar 

  • Golzio M, Teissie J et al (2002) Direct visualization at the single-cell level of electrically mediated gene delivery. Proc Natl Acad Sci U S A 99(3):1292–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hikosaka A, Kusakabe T et al (1992) Introduction and expression of recombinant genes in ascidian embryos. Develop Growth Differ 34(6):627–634

    Article  CAS  Google Scholar 

  • Hough-Evans BR, Britten RJ et al (1988) Mosaic incorporation and regulated expression of an exogenous gene in the sea urchin embryo. Dev Biol 129(1):198–208

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Yamashita S et al (1990) Electroporation as a new technique for producing transgenic fish. Cell Differ Dev 29(2):123–128

    Article  CAS  PubMed  Google Scholar 

  • Johnson DS, Davidson B et al (2004) Noncoding regulatory sequences of Ciona exhibit strong correspondence between evolutionary constraint and functional importance. Genome Res 14(12):2448–2456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kari W, Zeng F et al (2016) Embryo microinjection and electroporation in the Chordate Ciona intestinalis. J Vis Exp 2016(116)

    Google Scholar 

  • Lavitrano M, Camaioni A et al (1989) Sperm cells as vectors for introducing foreign DNA into eggs: genetic transformation of mice. Cell 57(5):717–723

    Article  CAS  PubMed  Google Scholar 

  • Livant DL, Hough-Evans BR et al (1991) Differential stability of expression of similarly specified endogenous and exogenous genes in the sea urchin embryo. Development 113(2):385–398

    CAS  PubMed  Google Scholar 

  • Matsumoto J, Dewar K et al (2010) High-throughput sequence analysis of Ciona intestinalis SL trans-spliced mRNAs: alternative expression modes and gene function correlates. Genome Res 20(5):636–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuoka T, Awazu S et al (2005) Germline transgenesis of the ascidian Ciona intestinalis by electroporation. Genesis 41(2):67–72

    Article  CAS  PubMed  Google Scholar 

  • McDougall A, Levasseur M (1998) Sperm-triggered calcium oscillations during meiosis in ascidian oocytes first pause, restart, then stop: correlations with cell cycle kinase activity. Development 125(22):4451–4459

    CAS  PubMed  Google Scholar 

  • McDougall A, Lee KW et al (2014) Microinjection and 4D fluorescence imaging in the eggs and embryos of the ascidian Phallusia mammillata. Methods Mol Biol 1128:175–185

    Article  CAS  PubMed  Google Scholar 

  • Mita-Miyazawa I, Ikegami S et al (1985) Histospecific acetylcholinesterase development in the presumptive muscle cells isolated from 16-cell-stage ascidian embryos with respect to the number of DNA replications. J Embryol Exp Morphol 87:1–12

    CAS  PubMed  Google Scholar 

  • Muller F, Ivics Z et al (1992) Introducing foreign genes into fish eggs with electroporated sperm as a carrier. Mol Mar Biol Biotechnol 1(4–5):276–281

    CAS  PubMed  Google Scholar 

  • Neumann E, Schaefer-Ridder M et al (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1(7):841–845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishida H (1987) Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. III. Up to the tissue restricted stage. Dev Biol 121(2):526–541

    Article  CAS  PubMed  Google Scholar 

  • Nishida H (1992) Regionality of egg cytoplasm that promotes muscle differentiation in embryo of the ascidian, Halocynthia roretzi. Development 116(3):521–529

    Google Scholar 

  • Nishida H, Satoh N (1983) Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. I. Up to the eight-cell stage. Dev Biol 99(2):382–394

    Article  CAS  PubMed  Google Scholar 

  • Nishida H, Satoh N (1985) Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. II. The 16- and 32-cell stages. Dev Biol 110(2):440–454

    Article  CAS  PubMed  Google Scholar 

  • Okkema PG, Harrison SW et al (1993) Sequence requirements for myosin gene expression and regulation in Caenorhabditis elegans. Genetics 135(2):385–404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phez E, Faurie C et al (2005) New insights in the visualization of membrane permeabilization and DNA/membrane interaction of cells submitted to electric pulses. Biochim Biophys Acta 1724(3):248–254

    Article  CAS  PubMed  Google Scholar 

  • Powers DA, Hereford L et al (1992) Electroporation: a method for transferring genes into the gametes of zebrafish (Brachydanio rerio), channel catfish (Ictalurus punctatus), and common carp (Cyprinus carpio). Mol Mar Biol Biotechnol 1(4–5):301–308

    CAS  PubMed  Google Scholar 

  • Powers DA, Kirby VL et al (1995) Electroporation as an effective means of introducing DNA into abalone (Haliotis rufescens) embryos. Mol Mar Biol Biotechnol 4(4):369–375

    CAS  PubMed  Google Scholar 

  • Prodon F, Chenevert J et al (2010) Dual mechanism controls asymmetric spindle position in ascidian germ cell precursors. Development 137(12):2011–2021

    Article  CAS  PubMed  Google Scholar 

  • Roure A, Lemaire P et al (2014) An otx/nodal regulatory signature for posterior neural development in ascidians. PLoS Genet 10(8):e1004548

    Article  PubMed  PubMed Central  Google Scholar 

  • Sardet C, McDougall A et al (2011) Embryological methods in ascidians: the Villefranche-sur-Mer protocols. Methods Mol Biol 770:365–400

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Morisawa M (1999) Loss of test cells leads to the formation of new tunic surface cells and abnormal metamorphosis in larvae of Ciona intestinalis (Chordata, ascidiacea). Dev Genes Evol 209(10):592–600

    Article  CAS  PubMed  Google Scholar 

  • Satou Y, Imai KS et al (2001) Action of morpholinos in Ciona embryos. Genesis 30(3):103–106

    Article  CAS  PubMed  Google Scholar 

  • Smith K, Spadafora C (2005) Sperm-mediated gene transfer: applications and implications. BioEssays 27(5):551–562

    Article  CAS  PubMed  Google Scholar 

  • Stinchcomb DT, Shaw JE et al (1985) Extrachromosomal DNA transformation of Caenorhabditis elegans. Mol Cell Biol 5(12):3484–3496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stolfi A, Christiaen L (2012) Genetic and genomic toolbox of the chordate Ciona intestinalis. Genetics 192(1):55–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stolfi A, Lowe EK et al (2014) Divergent mechanisms regulate conserved cardiopharyngeal development and gene expression in distantly related ascidians. elife 3:e03728

    Article  PubMed  PubMed Central  Google Scholar 

  • Symonds JE, Walker SP et al (1994) Electroporation of salmon sperm with plasmid DNA: evidence of enhanced sperm/DNA association. Aquaculture 119(4):313–327

    Article  CAS  Google Scholar 

  • Vierra DA, Irvine SQ (2012) Optimized conditions for transgenesis of the ascidian Ciona using square wave electroporation. Dev Genes Evol 222(1):55–61

    Article  CAS  PubMed  Google Scholar 

  • Zeller RW (2004) Generation and use of transgenic ascidians. In: Ettensohn C, Wray G, Wessels G (eds) Experimental analysis of the development of sea urchins and other non-vertebrate deuterostomes. Academic

    Google Scholar 

  • Zeller RW, Virata MJ et al (2006) Predictable mosaic transgene expression in ascidian embryos produced with a simple electroporation device. Dev Dyn 235(7):1921–1932

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Zeller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zeller, R.W. (2018). Electroporation in Ascidians: History, Theory and Protocols. In: Sasakura, Y. (eds) Transgenic Ascidians . Advances in Experimental Medicine and Biology, vol 1029. Springer, Singapore. https://doi.org/10.1007/978-981-10-7545-2_5

Download citation

Publish with us

Policies and ethics