Skip to main content

Morphology and Physiology of the Ascidian Nervous Systems and the Effectors

  • Chapter
  • First Online:
Transgenic Ascidians

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1029))

Abstract

Neurobiology in ascidians has made many advances. Ascidians have offered natural advantages to researchers, including fecundity, structural simplicity, invariant morphology, and fast and stereotyped developmental processes. The researchers have also accumulated on this animal a great deal of knowledge, genomic resources, and modern genetic techniques. A recent connectomic analysis has shown an ultimately resolved image of the larval nervous system, whereas recent applications of live imaging and optogenetics have clarified the functional organization of the juvenile nervous system. Progress in resources and techniques have provided convincing ways to deepen what we have wanted to know about the nervous systems of ascidians. Here, the research history and the current views regarding ascidian nervous systems are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abitua PB, Wagner E, Navarrete IA, Levine M (2012) Identification of a rudimentary neural crest in a non-vertebrate chordate. Nature 492:104–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arkett SA (1987) Ciliary arrest controlled by identified central neurons in a urochordate (Ascidiacea). J Comp Physiol A 161:837–847

    Article  Google Scholar 

  • Arkett SA, Mackie GO, Singla CL (1989) Neuronal organization of the ascidian (Urochordata) branchial basket revealed by cholinesterase activity. Cell Tissue Res 257:285–294

    Article  Google Scholar 

  • Awazu S, Matsuoka T, Inaba K, Satoh N, Sasakura Y (2007) High throughput enhancer trap by remobilization of transposon Minos in Ciona intestinalis. Genesis 45:307–317

    Article  CAS  PubMed  Google Scholar 

  • Berrill NJ (1948) The nature of the ascidian tadpole, with reference to Boltenia echinata. J Morphol 82:269–285

    Article  CAS  PubMed  Google Scholar 

  • Bone Q (1992) On the locomotion of ascidian tadpole larvae. J Mar Biol Assoc U K 72:161–186

    Article  Google Scholar 

  • Brown ER, Nishino A, Bone Q, Meinertzhagen IA, Okamura Y (2005) GABAergic synaptic transmission modulate swimming in the ascidian larva. Eur J Neurosci 22:2541–2548

    Article  CAS  PubMed  Google Scholar 

  • Cloney RA (1982) Ascidian larvae and the events of metamorphosis. Am Zool 22:817–826

    Article  Google Scholar 

  • Cole AG, Meinertzhagen IA (2004) The central nervous system of the ascidian larva: mitotic history of cells forming the neural tube in late embryonic Ciona intestinalis. Dev Biol 271:239–262

    Article  CAS  PubMed  Google Scholar 

  • Corbo JC, Levine M, Zeller RW (1997) Characterization of a notochord-specific enhancer from the Brachyury promoter region of the ascidian, Ciona intestinalis. Development 124:589–602

    CAS  PubMed  Google Scholar 

  • Coric T, Passamaneck YJ, Zhang P, Gregorio AD, Canessa CM (2008) Simple chordates exhibit a proton-independent function of acid-sensing ion channels. FASEB J 22:1914–1923

    Article  CAS  PubMed  Google Scholar 

  • Crisp DJ, Ghobashy AFAA (1971) Responses of the larvae of Diplosoma listerianum to light and gravity. In: Crisp DJ (ed) Fourth European marine biology symposium. Cambridge Press, Cambridge, pp 443–465

    Google Scholar 

  • Crowther RJ, Whittaker JR (1994) Serial repetition of cilia pairs along the tail surface of an ascidian larva. J Exp Zool 268:9–16

    Article  CAS  PubMed  Google Scholar 

  • Dahlberg C, Auger H, Dupont S, Sasakura Y, Thorndyke M, Joly J-S (2009) Refining the Ciona intestinalis model of central nervous system regeneration. PLoS One 4:e4458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dallman JE, Davis AK, Moody WJ (1998) Spontaneous activity regulates calcium-dependent K+ current expression in developing ascidian muscle. J Physiol 511:683–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dallman JE, Dorman JB, Moody WJ (2000) Action potential waveform voltage clamp shows significance of different Ca2+ channel types in developing ascidian muscle. J Physiol 524:375–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis AK, Greaves AA, Dallman JE, Moody WJ (1995) Comparison of ionic currents expressed in immature and mature muscle cells of an ascidian larva. J Neurosci 15:4875–4884

    CAS  PubMed  Google Scholar 

  • Deyts C, Casane D, Vernier P, Bourrat F, Joly J-S (2006) Morphological and gene expression similarities suggest that the ascidian neural gland may be osmoregulatory and homologous to vertebrate peri-ventricular organs. Eur J Neurosci 24:2299–2308

    Article  PubMed  Google Scholar 

  • Dufour HD, Chettouh Z, Deyts C, de Rosa R, Goridis C, Joly J-S, Brunet J-F (2006) Precraniate origin of cranial motoneurons. Proc Natl Acad Sci U S A 103:8727–8732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dynes J, Ngai J (1998) Pathfinding of olfactory neuron axons to stereotyped glomerular targets revealed by dynamic imaging in living zebrafish embryos. Neuron 20:1081–1091

    Article  CAS  PubMed  Google Scholar 

  • Eakin RM, Kuda A (1971) Ultrastructure of sensory receptors in ascidian tadpoles. Z Zellforsch 112:287–312

    Article  CAS  PubMed  Google Scholar 

  • Eaton RC, Lee RKK, Foreman MB (2001) The Mauthner cell and other identified neurons of the brainstem escape network of fish. Prog Neurobiol 63:467–485

    Article  CAS  PubMed  Google Scholar 

  • Esposito R, Yasuo H, Sirour C, Palladino A, Spagnuolo A, Hudson C (2017) Patterning of brain precursors in ascidian embryos. Development 144:258–264

    Article  CAS  PubMed  Google Scholar 

  • Fetcho JR (1991) Spinal network of the Mauthner cell. Brain Behav Evol 37:298–316

    Article  CAS  PubMed  Google Scholar 

  • Goodbody I (1974) The physiology of ascidians. Adv Mar Biol 12:1–149

    Google Scholar 

  • Gorbman A (1995) Olfactory origins and evolution of the brain pituitary endocrine system: facts and speculation. Gen Comp Endocrinol 97:171–178

    Article  CAS  PubMed  Google Scholar 

  • Grave C (1920) Amaroucium pellucidum (Leidy) form constellatum (Verrill) I. The activities and reactions of the tadpole larva. J Exp Zool 30:239–257

    Article  Google Scholar 

  • Hikosaka A, Kusakabe T, Satoh N, Makabe KW (1992) Introduction and expression of recombinant genes in ascidian embryos. Develop Growth Differ 34:627–634

    Article  CAS  Google Scholar 

  • Hill AS, Nishino A, Nakajo K, Zhang G, Fineman JR, Selzer ME, Okamura Y, Cooper EC (2008) Ion channel clustering at the axon initial segment and node of Ranvier evolved sequentially in early chordates. PLoS Genet 4:e1000317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirai S, Hotta K, Kubo Y, Nishino A, Okabe S, Okamura Y, Okado H (2017) AMPA glutamate receptors are required for sensory-organ formation and morphogenesis in the basal chordate. Proc Natl Acad Sci U S A 114:3939–3944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirano T, Nishida H (1997) Developmental fates of larval tissues after metamorphosis in ascidian Halocynthia roretzi. I. Origin of mesodermal tissues of the juvenile. Dev Biol 192:199–210

    Article  CAS  PubMed  Google Scholar 

  • Hirano T, Takahashi K, Yamashita N (1984) Determination of excitability types in blastomeres of the cleavage-arrested but differentiated embryos of an ascidian. J Physiol 347:301–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horie T, Orii H, Nakagawa M (2005) Structure of ocellus photoreceptors in the ascidian Ciona intestinalis Larva as revealed by an anti-arrestin antibody. J Neurobiol 65:241–250

    Article  CAS  PubMed  Google Scholar 

  • Horie T, Kusakabe T, Tsuda M (2008a) Glutamatergic networks in the Ciona intestinalis Larva. J Comp Neurol 508:249–263

    Article  CAS  PubMed  Google Scholar 

  • Horie T, Sakurai D, Ohtsuki H, Terakita A, Shichida Y, Usukura J, Kusakabe T, Tsuda M (2008b) Pigmented and nonpigmented ocelli in the brain vesicle of the ascidian larva. J Comp Neurol 509:88–102

    Article  PubMed  Google Scholar 

  • Horie T, Nakagawa M, Sasakura Y, Kusakabe TG, Tsuda M (2010) Simple motor system of the ascidian larva: neuronal complex comprising putative cholinergic and GABAergic/glycinergic neurons. Zool Sci 27:181–190

    Article  CAS  PubMed  Google Scholar 

  • Horie T, Shinki R, Ogura Y, Kusakabe TG, Satoh N, Sasakura Y (2011) Ependymal cells of chordate larvae are stem-like cells that form the adult nervous system. Nature 469:525–528

    Article  CAS  PubMed  Google Scholar 

  • Hozumi A, Horie T, Sasakura Y (2015) Neuronal map reveals the highly regionalized pattern of the juvenile central nervous system of the ascidian Ciona intestinalis. Dev Dyn 244:1375–1393

    Article  CAS  PubMed  Google Scholar 

  • Hudson C (2016) The central nervous system of ascidian larvae. Wiley Interdiscip Rev Dev Biol 5:538–561

    Article  PubMed  Google Scholar 

  • Imai JH, Meinertzhagen IA (2007a) Neurons of the ascidian larval nervous system in Ciona intestinalis: I. Central nervous system. J Comp Neurol 501:316–334

    Article  CAS  PubMed  Google Scholar 

  • Imai JH, Meinertzhagen IA (2007b) Neurons of the ascidian larval nervous system in Ciona intestinalis: II. Peripheral nervous system. J Comp Neurol 501:335–352

    Article  CAS  PubMed  Google Scholar 

  • Imai KS, Stolfi A, Levine M, Satou Y (2009) Gene regulatory networks underlying the compartmentalization of the Ciona central nervous system. Development 136:285–395

    Article  CAS  PubMed  Google Scholar 

  • Jeffery WR, Swalla BJ (1992) Evolution of alternate modes of development in ascidians. BioEssays 14:219–226

    Article  CAS  PubMed  Google Scholar 

  • Kajiwara S, Yoshida M (1985) Changes in behavior and ocellar structure during the larval life of solitary ascidians. Biol Bull 169:565–577

    Article  Google Scholar 

  • Kamiya C, Ohta N, Ogura Y, Yoshida K, Horie T, Kusakabe TG, Satake H, Sasakura Y (2014) Nonreproductive role of gonadotropin-releasing hormone in the control of ascidian metamorphosis. Dev Dyn 243:1524–1535

    Article  CAS  PubMed  Google Scholar 

  • Karaiskou A, Swalla BJ, Sasakura Y, Chambon J-P (2015) Metamorphosis in solitary ascidians. Genesis 53:34–47

    Article  PubMed  Google Scholar 

  • Katsuyama Y, Matsumoto J, Okada T, Ohtsuka Y, Chen L, Okado H, Okamura Y (2002) Regulation of synaptotagmin gene expression during ascidian embryogenesis. Dev Biol 244:293–304

    Article  CAS  PubMed  Google Scholar 

  • Katz MJ (1983) Comparative anatomy of the tunicate tadpole, Ciona intestinalis. Biol Bull 164:1–27

    Article  Google Scholar 

  • Koyama H, Kusunoki T (1993) Organization of the cerebral ganglion of the colonial ascidian Polyandrocarpa misakiensis. J Comp Neurol 338:549–559

    Article  CAS  PubMed  Google Scholar 

  • Mackie GO, Burighel P (2005) The nervous system in adult tunicates: current research directions. Can J Zool 83:151–183

    Article  CAS  Google Scholar 

  • Mast SO (1921) Reactions to light in the larvae of the ascidians, Amarocium constellatum and Amarocium pellucidum with special reference to their photic orientation. J Exp Zool 34:149–187

    Article  Google Scholar 

  • Matsubara S, Kawada T, Sakai T, Aoyama M, Osugi T, Shiraishi A, Satake H (2016) The significance of Ciona intestinalis as a stem organism in integrative studies of functional evolution of the chordate endocrine, neuroendocrine, and nervous systems. Gen Comp Endocrinol 227:101–108

    Article  CAS  PubMed  Google Scholar 

  • Matsunobu S, Sasakura Y (2015) Time course for tail regression during metamorphosis of the ascidian Ciona intestinalis. Dev Biol 405:71–81

    Article  CAS  PubMed  Google Scholar 

  • McHenry MJ, Strother JA (2003) The kinematics of phototaxis in larvae of the ascidian Aplidium constellatum. Mar Biol 142:173–184

    Article  Google Scholar 

  • Meinertzhagen IA, Okamura Y (2001) The larval ascidian nervous system: the chordate brain from its small beginnings. Trends Neurosci 24:401–410

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki S-I, Takahashi K, Tsuda K (1972) Calcium and sodium contributions to regenerative responses in the embryonic excitable cell membrane. Science 176:1441–1443

    Article  CAS  PubMed  Google Scholar 

  • Moody WJ, Okamura Y (2013) Neural development in simpler embryos: a retrospective of Dr. Kunitaro Takahashi’s work. Neurosci Res 75:167–170

    Article  Google Scholar 

  • Moret F, Christiaen L, Deyts C, Blin M, Vernier P, Joly J-S (2005a) Regulatory gene expressions in the ascidian ventral sensory vesicle: evolutionary relationships with the vertebrate hypothalamus. Dev Biol 277:567–579

    Article  CAS  PubMed  Google Scholar 

  • Moret F, Christiaen L, Deyts C, Blin M, Joly J-S, Vernier P (2005b) The dopamine-synthesizing cells in the swimming larva of the tunicate Ciona intestinalis are located only in the hypothalamus-related domain of the sensory vesicle. Eur J Neurosci 21:3043–3055

    Article  PubMed  Google Scholar 

  • Murata Y, Okado H, Katsuyama Y, Okamura Y, Kubo Y (2001) Primary structure, developmental expression and functional properties of an inward rectifier K+ channel of the tunicate. Receptors Channels 7:387–399

    CAS  PubMed  Google Scholar 

  • Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa M, Miyamoto T, Ohkuma M, Tsuda M (1999) Action spectrum for the photophobic response of Ciona intestinalis (Ascidiacea, Urochordata) larvae implicates retinal protein. Photochem Photobiol 70:359–362

    Article  CAS  PubMed  Google Scholar 

  • Nakajo K, Chen L, Okamura Y (1999) Cross-coupling between voltage-dependent Ca2+ channels and ryanodine receptors in developing ascidian muscle blastomeres. J Physiol 515:695–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajo K, Katsuyama Y, Ono F, Ohtsuka Y, Okamura Y (2003) Primary structure, functional characterization and developmental expression of the ascidian KV4-class potassium channel. Neurosci Res 45:59–70

    Article  CAS  PubMed  Google Scholar 

  • Nakayama-Ishimura A, Chambon J-P, Horie T, Satoh N, Sasakura Y (2009) Delineating metamorphic pathways in the ascidian Ciona intestinalis. Dev Biol 326:357–367

    Article  CAS  PubMed  Google Scholar 

  • Negishi T, Yasuo H (2015) Distinct modes of mitotic spindle orientation align cells in the dorsal midline of ascidian embryos. Dev Biol 408:66–78

    Article  CAS  PubMed  Google Scholar 

  • Nicol D, Meinertzhagen IA (1988a) Development of the central nervous system of the larva of the ascidian, Ciona intestinalis L. I. The early lineages of the neural plate. Dev Biol 130:721–736

    Article  CAS  PubMed  Google Scholar 

  • Nicol D, Meinertzhagen IA (1988b) Development of the central nervous system of the larva of the ascidian, Ciona intestinalis L. II. Neural plate morphogenesis and cell lineages during neurulation. Dev Biol 130:737–766

    Article  CAS  PubMed  Google Scholar 

  • Nicol D, Meinertzhagen IA (1991) Cell counts and maps in the larval central nervous system of the ascidian Ciona intestinalis (L.) J Comp Neurol 309:415–429

    Article  CAS  PubMed  Google Scholar 

  • Nishida H, Satoh N (1985) Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. II. The 16- and 32-cell stages. Dev Biol 110:440–454

    Article  CAS  PubMed  Google Scholar 

  • Nishide K, Mugitani M, Kumano G, Nishida H (2012) Neurula rotation determines left-right asymmetry in ascidian tadpole larvae. Development 139:1467–1475

    Article  CAS  PubMed  Google Scholar 

  • Nishino A, Okamura Y, Poscopo S, Brown ER (2010) A glycine receptor is involved in the organization of swimming movements in an invertebrate chordate. BMC Neurosci 11:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nishino A, Baba SA, Okamura Y (2011) A mechanism for graded motor control encoded in the channel properties of the muscle ACh receptor. Proc Natl Acad Sci U S A 108:2599–2604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishitsuji K, Horie T, Ichinose A, Sasakura Y, Yasuo H, Kusakabe TG (2012) Cell lineage and cis-regulation for a unique GABAergic/glycinergic neuron type in the larval nerve cord of the ascidian Ciona intestinalis. Develop Growth Differ 54:177–186

    Article  CAS  Google Scholar 

  • Ogura Y, Sakaue-Sawano A, Nakagawa M, Satoh N, Miyawaki A, Sasakura Y (2011) Coordination of mitosis and morphogenesis: role of a prolonged G2 phase during chordate neurulation. Development 138:577–587

    Article  CAS  PubMed  Google Scholar 

  • Ohmori H, Sasaki S (1977) Development of neuromuscular transmission in a larval tunicate. J Physiol 269:221–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta N, Horie T, Satoh N, Sasakura Y (2010) Transposon-mediated enhancer detection reveals the location, morphology and development of the cupular organs, which are putative hydrodynamic sensors, in the ascidian Ciona intestinalis. Zool Sci 27:842–850

    Google Scholar 

  • Ohtsuka Y, Okamura Y (2007) Voltage-dependent calcium influx mediates maturation of myofibril arrangement in ascidian larval muscle. Dev Biol 301:361–373

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka Y, Okamura Y, Obinata T (2001) Changes in gelsolin expression during ascidian metamorphosis. Dev Genes Evol 211:252–256

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka Y, Matsumoto J, Katsuyama Y, Okamura Y (2014) Nodal signaling regulates specification of ascidian peripheral neurons through control of the BMP signal. Development 141:3889–3899

    Article  CAS  PubMed  Google Scholar 

  • Okada T, Hirano H, Takahashi K, Okamura Y (1997) Distinct neuronal lineages of the ascidian embryo revealed by expression of a sodium channel gene. Dev Biol 190:257–272

    Article  CAS  PubMed  Google Scholar 

  • Okada T, MacIsaac SS, Katsuyama Y, Okamura Y, Meinertzhagen IA (2001) Neuronal form in the central nervous system of the tadpole larva of the ascidian Ciona intestinalis. Biol Bull 200:252–256

    Article  CAS  PubMed  Google Scholar 

  • Okada T, Katsuyama Y, Ono F, Okamura Y (2002) The development of three identified motor neurons in the larva of an ascidian, Halocynthia roretzi. Dev Biol 244:278–292

    Article  CAS  PubMed  Google Scholar 

  • Okado H, Takahashi K (1988) A simple “neural induction” model with two interacting cleavage-arrested ascidian blastomeres. Proc Natl Acad Sci U S A 85:6197–6201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okado H, Takahashi K (1990a) Differentiation of membrane excitability in isolated cleavage-arrested blastomeres from early ascidian embryos. J Physiol 427:583–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okado H, Takahashi K (1990b) Induced neural-type differentiation in the cleavage-arrested blastomere isolated from early ascidian embryos. J Physiol 427:603–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okado H, Takahashi K (1993) Neural differentiation in cleavage-arrested ascidian blastomeres induced by a proteolytic enzyme. J Physiol 463:269–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okagaki R, Izumi H, Okada T, Nagahora H, Nakajo K, Okamura Y (2001) The maternal transcript for truncated voltage-dependent Ca2+ channels in the ascidian embryo: a potential suppressive role in Ca2+ channel expression. Dev Biol 230:258–277

    Article  CAS  PubMed  Google Scholar 

  • Okamura Y, Shidara M (1987) Kinetic differences between Na channels in the egg and in the neurally differentiated blastomere in the tunicate. Proc Natl Acad Sci U S A 84:8702–8706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamura Y, Shidara M (1990a) Changes in sodium channels during neural differentiation in the isolated blastomere of the ascidian embryo. J Physiol 431:39–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamura Y, Shidara M (1990b) Inactivation kinetics of the sodium channel in the egg and the isolated, neurally differentiated blastomere of the ascidian. J Physiol 431:75–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamura Y, Takahashi K (1993) Neural induction suppresses early expression of the inward-rectifier K+ channel in the ascidian blastomere. J Physiol 463:245–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamura Y, Ono F, Okagaki R, Chong JA, Mandel G (1994) Neural expression of a sodium channel gene requires cell-specific interactions. Neuron 13:937–948

    Article  CAS  PubMed  Google Scholar 

  • Okamura Y, Nishino A, Murata Y, Nakajo K, Iwasaki H, Ohtsuka Y, Tanaka-Kunishima M, Takahashi N, Hara Y, Yoshida T, Nishida M, Okado H, Watari H, Meinertzhagen IA, Satoh N, Takahashi K, Satou Y, Okada Y, Mori Y (2005) Comprehensive analysis of the ascidian genome reveals novel insights into the molecular evolution of ion channel genes. Physiol Genomics 22:269–282

    Article  CAS  PubMed  Google Scholar 

  • Ono F, Katsuyama Y, Nakajo K, Okamura Y (1999) Subfamily-specific posttranscriptional mechanism underlies K+ channel expression in a developing neuronal blastomere. J Neurosci 19:6874–6886

    CAS  PubMed  Google Scholar 

  • Oonuma K, Tanaka M, Nishitsuji K, Kato Y, Shimai K, Kusakabe TG (2016) Revised lineage of larval photoreceptor cells in Ciona reveals archetypal collaboration between neural tube and neural crest in sensory organ formation. Dev Biol 420:178–185

    Article  CAS  PubMed  Google Scholar 

  • Pasini A, Amiel A, Rothbacher RA, Lemaire P, Darras S (2006) Formation of the ascidian epidermal sensory neurons: insights into the origin of the chordate peripheral nervous system. PLoS Biol 4:e225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pasini A, Manenti R, Rothbächer LP (2012) Antagonizing retinoic acid and FGF/MAPK pathway control posterior body patterning in the invertebrate chordate Ciona intestinalis. PLoS One 7:e46193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Razy-Krajka F, Brown ER, Horie T, Callebert J, Sasakura Y, Joly J-S, Kusakabe TG, Vernier P (2012) Monoaminergic modulation of photoreception in ascidian: evidence for a proto-hypothalamo-retinal territory. BMC Biol 10:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Razy-Krajka F, Lam K, Wang W, Stolfi A, Joly M, Bonneau R, Christiaen L (2014) Collier/OLF/EBF-dependent transcriptional dynamics control pharyngeal muscle specification from primed cardiopharyngeal progenitors. Dev Cell 29:263–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan K, Lu Z, Meinertzhagen IA (2016) The CNS connectome of a tadpole larva of Ciona intestinalis (L.) highlights sidedness in the brain of a chordate sibling. Elife 5:e16962

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryan K, Lu Z, Meinertzhagen IA (2017) Circuit homology between decussating pathways in the Ciona larval CNS and the vertebrate startle-response pathway. Curr Biol 27:721–728

    Article  CAS  PubMed  Google Scholar 

  • Sakurai D, Gada M, Kohmura Y, Horie T, Iwamoto H, Ohtsuki H, Tsuda M (2004) The role of pigment cells in the brain of ascidian larva. J Comp Neurol 475:70–82

    Article  PubMed  Google Scholar 

  • Sasaki H, Yoshida K, Hozumi A, Sasakura Y (2014) CRISPR/Cas9-mediated gene knockout in the ascidian Ciona intestinalis. Develop Growth Differ 56:499–510

    Article  CAS  Google Scholar 

  • Sasakura Y, Mita K, Ogura Y, Horie T (2012) Ascidians as excellent chordate models for studying the development of the nervous system during embryogenesis and metamorphosis. Develop Growth Differ 54:420–437

    Article  CAS  Google Scholar 

  • Satoh N (2014) Developmental genomics of ascidians. Wiley-Blackwell

    Google Scholar 

  • Satoh N (2016) Chordate origins and evolution. Academic

    Google Scholar 

  • Shidara M, Okamura Y (1991) Developmental changes in delayed rectifier K+ currents in the muscular- and neural-type blastomere of ascidian embryos. J Physiol 443:277–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimeld SM, Levin M (2006) Evidence for the regulation of left-right asymmetry in Ciona intestinalis by ion flux. Dev Dyn 235:1543–1553

    Article  CAS  PubMed  Google Scholar 

  • Simoncini L, Block ML, Moody WJ (1988) Lineage-specific development of calcium currents during embryogenesis. Science 242:1572–1575

    Article  CAS  PubMed  Google Scholar 

  • Stolfi A, Levine M (2011) Neuronal subtype specification in the spinal cord of a protovertebrate. Development 138:995–1004

    Article  CAS  PubMed  Google Scholar 

  • Stolfi A, Gainous B, Young JJ, Mori A, Levine M, Christiaen L (2010) Early chordate origins of the vertebrate second heart field. Science 329:565–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stolfi A, Gandhi S, Salek F, Christiaen L (2014) Tissue-specific genome editing in Ciona embryos by CRISPR/Cas9. Development 141:4115–4120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stolfi A, Ryan K, Meinertzhagen IA, Christiaen L (2015) Migratory neuronal progenitors arise from the neural plate borders in tunicates. Nature 527:371–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100:64–119

    Article  CAS  PubMed  Google Scholar 

  • Svane I, Young CM (1989) The ecology and behavior of ascidian larvae. Oceanogr Mar Biol Rev 27:45–90

    Google Scholar 

  • Takahashi K, Okamura Y (1998) Ion channels and early development of neural cells. Physiol Rev 78:307–337

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yoshii M (1981) Development of sodium, calcium and potassium channels in the cleavage-arrested embryo of an ascidian. J Physiol 315:515–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Miyazaki S, Kidokoro Y (1971) Development of excitability in embryonic muscle cell membranes in certain tunicates. Science 171:415–417

    Article  CAS  PubMed  Google Scholar 

  • Takamura K (1998) Nervous network in larvae of the ascidian Ciona intestinalis. Dev Genes Evol 208:1–8

    Article  CAS  PubMed  Google Scholar 

  • Takamura K, Egawa T, Ohnishi S, Okada T, Fukuoka T (2002) Developmental expression of ascidian neurotransmitter synthesis genes. I. Choline acetyltransferase and acetylcholine transporter genes. Dev Genes Evol 212:50–53

    Article  CAS  PubMed  Google Scholar 

  • Takamura K, Minamida N, Okabe S (2010) Neural map of the larval central nervous system in the ascidian Ciona intestinalis. Zool Sci 27:191–203

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi K, Nishida H (2004) Tracing cell fate in brain formation during embryogenesis of the ascidian Halocynthia roretzi. Develop Growth Differ 46:163–180

    Article  Google Scholar 

  • Terakubo HQ, Nakajima Y, Sasakura Y, Horie T, Konno A, Takahashi H, Inaba K, Hotta K, Oka K (2010) Network structure of projections extending from peripheral neurons in the tunic of ascidian larva. Dev Dyn 239:2278–2287

    Article  PubMed  Google Scholar 

  • Torrence SA (1986) Sensory endings of the ascidian static organ (Chordata, Ascidiacea). Zoomorphology 106:61–66

    Article  Google Scholar 

  • Torrence SA, Cloney RA (1982) Nervous system of ascidian larvae: caudal primary sensory neurons. Zoomorphology 99:103–115

    Article  Google Scholar 

  • Torrence SA, Cloney RA (1983) Ascidian larval nervous system: primary sensory neurons in adhesive papillae. Zoomorphology 102:111–123

    Google Scholar 

  • Treen N, Yoshida K, Sakuma T, Sasaki H, Kawai N, Yamamoto T, Sasakura Y (2014) Tissue-specific and ubiquitous gene knockouts by TALEN electroporation provide new approaches to investigating gene function in Ciona. Development 141:481–487

    Article  CAS  PubMed  Google Scholar 

  • Tsuda M, Sakurai D, Goda M (2003a) Direct evidence for the role of pigment cells in the brain of ascidian larvae by laser ablation. J Exp Biol 206:1409–1417

    Article  PubMed  Google Scholar 

  • Tsuda M, Kawakami I, Shiraishi S (2003b) Sensitization and habituation of the swimming behavior in ascidian larvae to light. Zool Sci 20:13–22

    Article  PubMed  Google Scholar 

  • Tsutsui H, Oka Y (2000) Light-sensitive voltage responses in the neurons of the cerebral ganglion of Ciona savignyi (Chordata: Ascidiacea). Biol Bull 198:26–28

    Article  CAS  PubMed  Google Scholar 

  • White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B 314:1–340

    Article  CAS  Google Scholar 

  • Willey A (1894) Amphioxus and the ancestry of the vertebrates. Macmillan, New York

    Book  Google Scholar 

  • Yokoyama TD, Hotta K, Oka K (2014) Comprehensive morphological analysis of individual peripheral neuron dendritic arbors in ascidian larvae using the photoconvertible protein Kaede. Dev Dyn 243:1362–1373

    Article  CAS  PubMed  Google Scholar 

  • Zanetti L, Ristoratore F, Francone M, Piscopo S, Brown ER (2007) Primary cultures of nervous system cells from the larva of the ascidian Ciona intestinalis. J Neurosci Methods 165:191–197

    Article  CAS  PubMed  Google Scholar 

  • Zaniolo G, Lane NJ, Burighel P, Manni L (2002) Development of the motor nervous system in ascidians. J Comp Neurol 443:124–135

    Article  PubMed  Google Scholar 

  • Zega G, Thorndyke MC, Brown ER (2006) Development of swimming behaviour in the larva of the ascidian Ciona intestinalis. J Exp Biol 209:3405–3412

    Article  PubMed  Google Scholar 

  • Zega G, Biggiogero M, Groppelli S, Candiani S, Oliveri D, Parodi M, Pestarino M, De Bernardi F, Pennati R (2008) Developmental expression of glutamic acid decarboxylase and of γ-aminobutyric acid type B receptors in the ascidian Ciona intestinalis. J Comp Neurol 506:489–505

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Aravanis AM, Adamantidis A, de Lacea L, Deisseroth K (2007) Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci 8:577–581

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful for helpful comments by the editor, Dr. Yasunori Sasakura, which greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuo Nishino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nishino, A. (2018). Morphology and Physiology of the Ascidian Nervous Systems and the Effectors. In: Sasakura, Y. (eds) Transgenic Ascidians . Advances in Experimental Medicine and Biology, vol 1029. Springer, Singapore. https://doi.org/10.1007/978-981-10-7545-2_16

Download citation

Publish with us

Policies and ethics