Transgenic Techniques for Investigating Cell Biology During Development

  • Christina D. CotaEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1029)


Ascidians are increasingly being used as a system for investigating cell biology during development. The extreme genetic and cellular simplicity of ascidian embryos in combination with superior experimental tractability make this an ideal system for in vivo analysis of dynamic cellular processes. Transgenic approaches to cellular and sub-cellular analysis of ascidian development have begun to yield new insights into the mechanisms regulating developmental signaling and morphogenesis. This chapter focuses on the targeted expression of fusion proteins in ascidian embryos and how this technique is being deployed to garner new insights into the cell biology of development.


Ascidians Ciona intestinalis Phallusia mammillata Halocynthia roretzi Cardiac induction Collective cell migration Cell cycle progression Spindle positioning Fusion proteins 



The author would like to thank Dr. Brad Davidson (Swarthmore College) for comments on the manuscript. Work in the Davidson laboratory is supported by Swarthmore College and the NIH (1R01HL091027, R15 HD080525-01). CDC is supported by an American Heart Association Postdoctoral Award (16POST27250075).


  1. Brown FD, Swalla BJ (2007) Vasa expression in a colonial ascidian, Botrylloides violaceus. Evol Dev 9:165–177. CrossRefPubMedGoogle Scholar
  2. Chalfie M, Tu Y, Euskirchen G et al (1994) Green fluorescent protein as a marker for gene expression. Science (New York, NY) 263:802–805. CrossRefGoogle Scholar
  3. Christiaen L, Davidson B, Kawashima T et al (2008) The transcription/migration interface in heart precursors of Ciona intestinalis. Science New York NY 320:1349–1352. CrossRefGoogle Scholar
  4. Cooley J, Whitaker S, Sweeney S et al (2011) Cytoskeletal polarity mediates localized induction of the heart progenitor lineage. Nat Cell Biol 13:952–957. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Corbo JC, Levine M, Zeller RW (1997) Characterization of a notochord-specific enhancer from the Brachyury promoter region of the ascidian, Ciona intestinalis. Development 124:589–602Google Scholar
  6. Cota CD, Davidson B (2015) Mitotic membrane turnover coordinates differential induction of the heart progenitor lineage. Dev Cell 34:505–519. CrossRefPubMedGoogle Scholar
  7. Cota CD, Palmquist K, Davidson B (2017) Heart development in Ciona. In: Reference module in life sciences. Elsevier, January. ISBN 9780128096338. /
  8. Day RN, Davidson MW (2009) The fluorescent protein palette: tools for cellular imaging. Chem Soc Rev 38:2887–2921. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dehal P (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science (New York, NY) 298:2157–2167. CrossRefGoogle Scholar
  10. Denker E, Bocina I, Jiang D (2013) Tubulogenesis in a simple cell cord requires the formation of bi-apical cells through two discrete Par domains. Development 140:2985–2996. CrossRefPubMedGoogle Scholar
  11. Dong B, Horie T, Denker E et al (2009) Tube formation by complex cellular processes in Ciona Intestinalis notochord. Dev Biol 330:237–249. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dong B, Deng W, Jiang D (2011) Distinct cytoskeleton populations and extensive crosstalk control Ciona notochord tubulogenesis. Development 138:1631–1641. CrossRefPubMedGoogle Scholar
  13. Dumollard R, Hebras C, Besnardeau L, McDougall A (2013) Beta-catenin patterns the cell cycle during maternal-to-zygotic transition in urochordate embryos. Dev Biol 384:331–342. CrossRefPubMedGoogle Scholar
  14. England CG, Luo H, Cai W (2015) HaloTag technology: a versatile platform for biomedical applications. Bioconjug Chem 26:975–986. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Evans-Anderson H, Christiaen L (2016) Ciona as a simple chordate model for heart development and regeneration. JCDD 3:25. CrossRefPubMedCentralGoogle Scholar
  16. Gautier A, Juillerat A, Heinis C et al (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15:128–136. CrossRefPubMedGoogle Scholar
  17. Gline S, Kaplan N, Bernadskaya Y et al (2015) Surrounding tissues canalize motile cardiopharyngeal progenitors towards collective polarity and directed migration. Development 142:544–554. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gyoja F (2006) Expression of a muscle determinant gene, macho-1, in the anural ascidian Molgula tectiformis. Dev Genes Evol 216:285–289. CrossRefPubMedGoogle Scholar
  19. Hashimoto H, Robin FB, Sherrard KM, Munro EM (2015) Sequential contraction and exchange of apical junctions drives zippering and neural tube closure in a simple chordate. Dev Cell 32:241–255. CrossRefPubMedGoogle Scholar
  20. Hebras C, McDougall A (2012) Urochordate ascidians possess a single isoform of aurora kinase that localizes to the midbody via TPX2 in eggs and cleavage stage embryos. PloS One 7(9):e45431Google Scholar
  21. Hibino T, Nishikata T, Nishida H (1998) Centrosome-attracting body: a novel structure closely related to unequal cleavages in the ascidian embryo. Develop Growth Differ 40:85–95CrossRefGoogle Scholar
  22. Hikosaka A, Satoh N, Makabe KW (1993) Regulated spatial expression of fusion gene constructs with the 5′ upstream region of Halocynthia roretzi muscle actin gene in Ciona savignyi embryos. Rouxs Arch Dev Biol 203:104–112. CrossRefPubMedGoogle Scholar
  23. Imai KS, Stolfi A, Levine M, Satou Y (2009) Gene regulatory networks underlying the compartmentalization of the Ciona central nervous system. Development 136:285–293. CrossRefPubMedGoogle Scholar
  24. Iseto T, Nishida H (1999) Ultrastructural studies on the centrosome-attracting body: electron-dense matrix and its role in unequal cleavages in ascidian embryos. Develop Growth Differ 41:601–609CrossRefGoogle Scholar
  25. Kanda T, Sullivan KF, Wahl GM (1998) Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr Biol 8:377–385CrossRefPubMedGoogle Scholar
  26. Kawai N, Ochiai H, Sakuma T et al (2012) Efficient targeted mutagenesis of the chordate Ciona Intestinalis genome with zinc-finger nucleases. Develop Growth Differ 54:535–545. CrossRefGoogle Scholar
  27. Kawai N, Ogura Y, Ikuta T et al (2015) Hox10-regulated endodermal cell migration is essential for development of the ascidian intestine. Dev Biol 403:43–56. CrossRefPubMedGoogle Scholar
  28. Keppler A, Gendreizig S, Gronemeyer T et al (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21:86–89. CrossRefPubMedGoogle Scholar
  29. Kourakis MJ, Reeves W, Newman-Smith E et al (2014) A one-dimensional model of PCP signaling: polarized cell behavior in the notochord of the ascidian Ciona. Dev Biol 395:120–130. CrossRefPubMedPubMedCentralGoogle Scholar
  30. McDougall A, Lee KW-M, Dumollard R (2014) Microinjection and 4D fluorescence imaging in the eggs and embryos of the ascidian Phallusia mammillata. Methods Mol Biol 1128:175–185. CrossRefPubMedGoogle Scholar
  31. McDougall A, Chenevert J, Pruliere G et al (2015) Centrosomes and spindles in ascidian embryos and eggs. Methods Cell Biol 129:317–339. CrossRefPubMedGoogle Scholar
  32. Miyawaki A (2011) Proteins on the move: insights gained from fluorescent protein technologies. Nat Rev Mol Cell Biol 12:656–668. CrossRefPubMedGoogle Scholar
  33. Navarrete IA, Levine M (2016) Nodal and FGF coordinate ascidian neural tube morphogenesis. Development 143:4665–4675. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Negishi T, Yasuo H (2015) Distinct modes of mitotic spindle orientation align cells in the dorsal midline of ascidian embryos. Dev Biol 408:66–78. CrossRefPubMedGoogle Scholar
  35. Negishi T, McDougall A, Yasuo H (2013) Practical tips for imaging ascidian embryos. Develop Growth Differ 55:446–453. CrossRefGoogle Scholar
  36. Newman-Smith E, Kourakis MJ, Reeves W et al (2015) Reciprocal and dynamic polarization of planar cell polarity core components and myosin. Elife 4:e05361. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Nicol D, Meinertzhagen IA (1988a) Development of the central nervous system of the larva of the ascidian, Ciona intestinalis L. II. Neural plate morphogenesis and cell lineages during neurulation. Dev Biol 130:737–766CrossRefPubMedGoogle Scholar
  38. Nicol D, Meinertzhagen IA (1988b) Development of the central nervous system of the larva of the ascidian, Ciona intestinalis L: I. The early lineages of the neural plate. Dev Biol 130:721–736Google Scholar
  39. Nishikata T, Hibino T, Nishida H (1999) The centrosome-attracting body, microtubule system, and posterior egg cytoplasm are involved in positioning of cleavage planes in the ascidian embryo. Dev Biol 209:72–85. CrossRefPubMedGoogle Scholar
  40. Nishiyama A, Fujiwara S (2008) RNA interference by expressing short hairpin RNA in the Ciona intestinalis embryo. Develop Growth Differ 50:521–529. CrossRefGoogle Scholar
  41. Norton J, Cooley J, Islam AFMT et al (2013) Matrix adhesion polarizes heart progenitor induction in the invertebrate chordate Ciona intestinalis. Development 140:1301–1311. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Oda-Ishii I, Ishii Y, Mikawa T (2010) Eph regulates Dorsoventral asymmetry of the notochord plate and convergent extension-mediated notochord formation. PLoS One 5:e13689. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ogura Y, Sakaue-Sawano A, Nakagawa M et al (2011) Coordination of mitosis and morphogenesis: role of a prolonged G2 phase during chordate neurulation. Development 138:577–587. CrossRefPubMedGoogle Scholar
  44. Passamaneck YJ, Di Gregorio A, Papaioannou VE, Hadjantonakis A-K (2006) Live imaging of fluorescent proteins in chordate embryos: from ascidians to mice. Microsc Res Tech 69:160–167. CrossRefPubMedGoogle Scholar
  45. Patalano S, Pruliere G, Prodon F et al (2006) The aPKC-PAR-6-PAR-3 cell polarity complex localizes to the centrosome attracting body, a macroscopic cortical structure responsible for asymmetric divisions in the early ascidian embryo. J Cell Sci 119:1592–1603. CrossRefPubMedGoogle Scholar
  46. Prodon F, Chenevert J, Hebras C et al (2010) Dual mechanism controls asymmetric spindle position in ascidian germ cell precursors. Development 137:2011–2021. CrossRefPubMedGoogle Scholar
  47. Roure A, Rothbächer U, Robin F et al (2007) A multicassette Gateway vector set for high throughput and comparative analyses in Ciona and vertebrate embryos. PLoS One 2:e916. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sakaue-Sawano A, Kurokawa H, Morimura T et al (2008) Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132:487–498. CrossRefPubMedGoogle Scholar
  49. Sardet C, Nishida H, Prodon F, Sawada K (2003) Maternal mRNAs of PEM and macho 1, the ascidian muscle determinant, associate and move with a rough endoplasmic reticulum network in the egg cortex. Development 130:5839–5849. CrossRefPubMedGoogle Scholar
  50. Sasaki H, Yoshida K, Hozumi A, Sasakura Y (2014) CRISPR/Cas9-mediated gene knockout in the ascidian Ciona intestinalis. Develop Growth Differ 56:499–510. CrossRefGoogle Scholar
  51. Satoh N (1994) Developmental biology of ascidians. Cambridge University Press, CambridgeGoogle Scholar
  52. Satoh N, Satou Y, Davidson B, Levine M (2003) Ciona intestinalis: an emerging model for whole-genome analysesGoogle Scholar
  53. Satou Y (2004) The ascidian Mesp gene specifies heart precursor cells. Development 131:2533–2541. CrossRefPubMedGoogle Scholar
  54. Sehring IM, Dong B, Denker E et al (2014) An equatorial contractile mechanism drives cell elongation but not cell division. PLoS Biol 12:e1001781. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Shaner NC, Campbell RE, Steinbach PA et al (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572. CrossRefPubMedGoogle Scholar
  56. Shaner NC, Lin MZ, McKeown MR et al (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Meth 5:545–551. CrossRefGoogle Scholar
  57. Sherrard K, Robin F, Lemaire P, Munro E (2010) Sequential activation of apical and basolateral contractility drives ascidian endoderm invagination. Curr Biol CB 20:1499–1510. CrossRefPubMedGoogle Scholar
  58. Snapp EL (2009) Fluorescent proteins: a cell biologist’s user guide. Trends Cell Biol 19:649–655. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Stolfi A, Christiaen L (2012) Genetic and genomic toolbox of the chordate Ciona intestinalis. Genetics 192:55–66. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Stolfi A, Gainous TB, Young JJ et al (2010) Early chordate origins of the vertebrate second heart field. Science (New York, NY) 329:565–568. CrossRefGoogle Scholar
  61. Stolfi A, Gandhi S, Salek F, Christiaen L (2014) Tissue-specific genome editing in Ciona embryos by CRISPR/Cas9. Development 141:4115–4120. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Treen N, Yoshida K, Sakuma T et al (2014) Tissue-specific and ubiquitous gene knockouts by TALEN electroporation provide new approaches to investigating gene function in Ciona. Development 141:481–487. CrossRefPubMedGoogle Scholar
  63. Veeman MT, Newman-Smith E, El-Nachef D, Smith WC (2010) The ascidian mouth opening is derived from the anterior neuropore: reassessing the mouth/neural tube relationship in chordate evolution. Dev Biol 344:138–149. CrossRefPubMedGoogle Scholar
  64. Yang TT, Cheng L, Kain SR (1996) Optimized codon usage and chromophore mutations provide enhanced sensitivity with the green fluorescent protein. Nucleic Acids Res 24:4592–4593CrossRefPubMedPubMedCentralGoogle Scholar
  65. Yoshida K, Treen N, Hozumi A et al (2014) Germ cell mutations of the ascidian Ciona Intestinalis with TALE nucleases. Genesis 52:431–439. CrossRefPubMedGoogle Scholar
  66. Zeller RW (2004) Generation and use of transgenic ascidian embryos. In: Methods in cell biology. Elsevier, pp 713–730Google Scholar
  67. Zeller RW, Weldon DS, Pellatiro MA, Cone AC (2006) Optimized green fluorescent protein variants provide improved single cell resolution of transgene expression in ascidian embryos. Dev Dyn 235:456–467. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Swarthmore CollegeSwarthmoreUSA

Personalised recommendations