TALEN-Based Knockout System

  • Keita YoshidaEmail author
  • Nicholas Treen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1029)


Targeted mutagenesis of genes-of-interest is a powerful method of addressing the functions of genes. Genome editing techniques, such as transcriptional activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 systems, have enabled this approach in various organisms because of their ease of use. In the ascidian, Ciona intestinalis, recent studies show that TALEN-based knockout can be applied to establishing both mutant lines and tissue-specific knockout for addressing gene functions. Here, we introduce recent updates to the TALEN toolkit that facilitate detailed functional analysis of genes in ascidians.


Ascidian Ciona intestinalis Genome editing TALEN Conditional knockout 


  1. Akanuma T, Hori S, Darras S, Nishida H (2002) Notch signaling is involved in nervous system formation in ascidian embryos. Dev Genes Evol 212:459–472CrossRefPubMedGoogle Scholar
  2. Boch J, Scholze H, Schornack S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512CrossRefPubMedGoogle Scholar
  3. Carroll D (2014) Genome engineering with targetable nucleases. Annu Rev Biochem 83:409–439CrossRefPubMedGoogle Scholar
  4. Ikuta T, Satoh N, Saiga H (2010) Limited functions of Hox genes in the larval development of the ascidian Ciona Intestinalis. Development 137:1505–1513CrossRefPubMedGoogle Scholar
  5. Kawai N, Ochiai H, Sakuma T et al (2012) Efficient targeted mutagenesis of the chordate Ciona intestinalis genome with zinc-finger nucleases. Develop Growth Differ 54:535–545CrossRefGoogle Scholar
  6. Kawai N, Ogura Y, Ikuta T et al (2015) Hox10-regulated endodermal cell migration is essential for development of the ascidian intestine. Dev Biol 403:43–56CrossRefPubMedGoogle Scholar
  7. Kay S, Bonas U (2009) How Xanthomonas type III effectors manipulate the host plant. Curr Opin Microbiol 12:37–43CrossRefPubMedGoogle Scholar
  8. Kim JH, Lee SR, Li LH et al (2011) High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One 6:e18556CrossRefPubMedPubMedCentralGoogle Scholar
  9. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501CrossRefPubMedGoogle Scholar
  10. Nakashima K, Yamada L, Satou Y, Azuma J, Satoh N (2004) The evolutionary origin of animal cellulose synthase. Dev Genes Evol 214:81–88CrossRefPubMedGoogle Scholar
  11. Ota S, Hisano Y, Muraki M et al (2013) Efficient identification of TALEN-mediated genome modifications using heteroduplex mobility assays. Genes Cells 18:450–458CrossRefPubMedPubMedCentralGoogle Scholar
  12. Rothbächer U, Bertrand V, Lamy C, Lemaire P (2007) A combinatorial code of maternal GATA, Ets and beta-catenin-TCF transcription factors specifies and patterns the early ascidian ectoderm. Development 134:4023–4032CrossRefPubMedGoogle Scholar
  13. Sakuma T, Ochiai H, Kaneko T et al (2013a) Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity. Sci Rep 3:3379CrossRefPubMedPubMedCentralGoogle Scholar
  14. Sakuma T, Hosoi S, Woltjen K et al (2013b) Efficient TALEN construction and evaluation methods for human cell and animal applications. Genes Cells 18:315–326CrossRefPubMedGoogle Scholar
  15. Sasakura Y, Nakashima K, Awazu S et al (2005) Transposon-mediated insertional mutagenesis revealed the functions of animal cellulose synthase in the ascidian Ciona intestinalis. Proc Natl Acad Sci U S A 102:15134–15139CrossRefPubMedPubMedCentralGoogle Scholar
  16. Sasakura Y, Suzuki MM, Hozumi A, Inaba K, Satoh N (2010) Maternal factor-mediated epigenetic gene silencing in the ascidian Ciona intestinalis. Mol Gen Genomics 283:99–110CrossRefGoogle Scholar
  17. Sasakura Y, Ogura Y, Treen N et al (2016) Transcriptional regulation of a horizontally transferred gene from bacterium to chordate. Proc Biol Sci 283:20161712CrossRefPubMedPubMedCentralGoogle Scholar
  18. Shi W, Peyrot SM, Munro E, Levine M (2009) FGF3 in the floor plate directs notochord convergent extension in the Ciona tadpole. Development 136:23–28CrossRefPubMedGoogle Scholar
  19. Shimeld SM, Levin M (2006) Evidence for the regulation of left-right asymmetry in Ciona intestinalis by ion flux. Dev Dyn 235:1543–1553CrossRefPubMedGoogle Scholar
  20. Takamura K, Fujimura M, Yamaguchi Y (2002) Primordial germ cells originate from the endodermal strand cells in the ascidian Ciona intestinalis. Dev Genes Evol 212:11–18CrossRefPubMedGoogle Scholar
  21. Tolkin T, Christiaen L (2016) Rewiring of an ancestral Tbx1/10-Ebf-Mrf network for pharyngeal muscle specification in distinct embryonic lineages. Development 143:3852–3862CrossRefPubMedPubMedCentralGoogle Scholar
  22. Treen N, Yoshida K, Sakuma T et al (2014) Tissue-specific and ubiquitous gene knockouts by TALEN electroporation provide new approaches to investigating gene function in Ciona. Development 141:481–487CrossRefPubMedGoogle Scholar
  23. Yoshida K, Saiga H (2008) Left-right asymmetric expression of Pitx is regulated by the asymmetric Nodal signaling through an intronic enhancer in Ciona intestinalis. Dev Genes Evol 218:353–360CrossRefPubMedGoogle Scholar
  24. Yoshida K, Treen N, Hozumi A, Sakuma T, Yamamoto T, Sasakura Y (2014) Germ cell mutations of the ascidian Ciona intestinalis with TALE nucleases. Genesis 52:431–439CrossRefPubMedGoogle Scholar
  25. Yoshida K, Nakahata A, Treen N, Sakuma T, Yamamoto T, Sasakura Y (2017a) Hox-mediated endodermal identity patterns pharyngeal muscle formation in the chordate pharynx. Development 144:1629–1634CrossRefPubMedGoogle Scholar
  26. Yoshida K, Hozumi A, Treen N et al (2017b) Germ cell regeneration-mediated, enhanced mutagenesis in the ascidian Ciona intestinalis reveals flexible germ cell formation from different somatic cells. Dev Biol 423:111–125CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Shimoda Marine Research CenterUniversity of TsukubaShimodaJapan
  2. 2.Lewis-Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonUSA

Personalised recommendations