Advertisement

K41 Versus K62: Recent Developments

  • R. A. Antonia
  • S. L. Tang
  • L. Danaila
  • L. Djenidi
  • Y. Zhou
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

For the past 50 years or so, Kolmogorov’s (1962) correction (K62) to his 1941 hypotheses (K41) has been embraced by an overwhelming majority of turbulence researchers. Our recent work suggests that there are no valid reasons for abandoning K41. In particular, analytical considerations, based on the NS equations, which take into account the finite Reynolds number (FRN) effect, together with the available experimental laboratory data, seem to confirm a tendency towards the simple and elegant predictions of K41 as the Reynolds number increases. This is especially true when the focus is on the length scales which lie in the dissipative range. Incorrectly accounting for the FRN effect and the inclusion of the atmospheric surface layer (ASL) data, likely to have been affected by the proximity to the surface, appear to be the major factors which have contributed to a nearly unchallenged acceptance of K62.

Notes

Acknowledgements

SL Tang wishes to acknowledge support given to him from NSFC through grant 11702074.

References

  1. 1.
    Taylor GI (1935) Statistical theory of turbulence. Proc R Soc Lond A 151:421–444CrossRefGoogle Scholar
  2. 2.
    De Karman T, Howarth L (1938) On the statistical theory of isotropic turbulence. Proc R Soc Lond A 164:192–215CrossRefGoogle Scholar
  3. 3.
    Kolmogorov AN (1941) Local structure of turbulence in an incompressible fluid for very large Reynolds numbers. Dokl Akad Nauk SSSR 30:299–303MathSciNetGoogle Scholar
  4. 4.
    Kolmogorov AN (1941) Dissipation of energy in the locally isotropic turbulence. Dokl Akad Nauk SSSR 32:19–21MathSciNetzbMATHGoogle Scholar
  5. 5.
    Kolmogorov AN (1962) A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J Fluid Mech 13:82–85MathSciNetCrossRefGoogle Scholar
  6. 6.
    Batchelor GK (1947) Kolmogoroff’s theory of locally isotropic turbulence. Proc Carnb Phil Soc 43:533–559MathSciNetCrossRefGoogle Scholar
  7. 7.
    Batchelor GK, Townsend AA (1947) Decay of vorticity in isotropic turbulence. Proc R Soc Lond A 190:534–550CrossRefGoogle Scholar
  8. 8.
    Batchelor GK, Townsend AA (1949) The nature of turbulent motion at large wave-numbers. Proc R Soc Lond A 199:238–255CrossRefGoogle Scholar
  9. 9.
    Obukhov AM (1962) Some specific features of atmospheric turbulence. J Fluid Mech 13:77–81MathSciNetCrossRefGoogle Scholar
  10. 10.
    Van Atta CW, Antonia RA (1980) Reynolds number dependence of skewness and flatness factors of turbulent velocity derivatives. Phys Fluids 23:252–257CrossRefGoogle Scholar
  11. 11.
    Sreenivasan K, Antonia RA (1997) The phenomenology of small-scale turbulence. Ann Rev Fluid Mech 29:435–472MathSciNetCrossRefGoogle Scholar
  12. 12.
    Wyngaard JC (2010) Turbulence in the atmosphere. Cambridge University PressGoogle Scholar
  13. 13.
    Anselmet F, Antonia RA, Danaila L (2001) Turbulent flows and intermittency in laboratory experiments. Planet Sp Sci 49:1177–1191CrossRefGoogle Scholar
  14. 14.
    Ishihara T, Gotoh T, Kaneda Y (2009) Study of high-Reynolds number isotropic turbulence by direct numerical simulation. Ann Rev Fluid Mech 41:165–180MathSciNetCrossRefGoogle Scholar
  15. 15.
    Frisch U (1995) Turbulence: the legacy of A. N. Kolmogorov. Cambridge University PressGoogle Scholar
  16. 16.
    Qian J (1994) Skewness factor of turbulent velocity derivative. Acta Mech Sin 10:12–15CrossRefGoogle Scholar
  17. 17.
    Grossmann S, Lohse D (1994) Scale resolved intermittency in turbulence. Phys Fluids 6:611–617CrossRefGoogle Scholar
  18. 18.
    Qian J (1998) Normal and anomalous scaling of turbulence. Phys Rev E 58:7325CrossRefGoogle Scholar
  19. 19.
    Anselmet F, Gagne Y, Hopfinger EJ, Antonia RA (1984) High-order velocity structure functions in turbulent shear flows. J Fluid Mech 140:63–89CrossRefGoogle Scholar
  20. 20.
    Qian J (1997) Inertial range and the finite Reynolds number effect of turbulence. Phys Rev E 55:337–342CrossRefGoogle Scholar
  21. 21.
    Qian J (1999) Slow decay of the finite Reynolds number effect of turbulence. Phys Rev E 60:3409CrossRefGoogle Scholar
  22. 22.
    Danaila L, Anselmet F, Zhou T, Antonia RA (1999) A generalization of Yaglom?s equation which accounts for the large-scale forcing in heated decaying turbulence. J Fluid Mech 391:359–372MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lindborg E (1999) Correction to the four-fifths law due to variations of the dissipation. Phys Fluids 11:510CrossRefGoogle Scholar
  24. 24.
    Von Karman T, Lin CC (1949) On the concept of similiarity in the theory of isotropic turbulence. Rev Mod Phys 21:516CrossRefGoogle Scholar
  25. 25.
    Lundgren TS (2003) Kolmogorov turbulence by matched asymptotic expansions. Phys Fluids 15:1074–1081MathSciNetCrossRefGoogle Scholar
  26. 26.
    Antonia RA, Burattini P (2006) Approach to the 4/5 law in homogeneous isotropic turbulence. J Fluid Mech 550:175–184CrossRefGoogle Scholar
  27. 27.
    Tchoufag J, Sagaut P, Cambon C (2012) Spectral approach to finite Reynolds number effects on Kolmogorov’s 4/5 law in isotropic turbulence. Phys Fluids 24:015107CrossRefGoogle Scholar
  28. 28.
    Wyngaard JC, Tennekes H (1970) Measurements of the small-scale structure of turbulence at moderate Reynolds numbers. Phys Fluids 13:1962–1969CrossRefGoogle Scholar
  29. 29.
    Antonia RA, Tang SL, Djenidi L, Danaila L (2015) Boundedness of the velocity derivative skewness in various turbulent flows. J Fluid Mech 781:727–744MathSciNetCrossRefGoogle Scholar
  30. 30.
    Tang SL, Antonia RA, Djenidi L, Abe H, Zhou T, Danaila L, Zhou Y (2015) Transport equation for the mean turbulent energy dissipation rate on the centreline of a fully developed channel flow. J Fluid Mech 777:151–177MathSciNetCrossRefGoogle Scholar
  31. 31.
    Tang SL, Antonia RA, Djenidi L, Zhou Y (2015) Transport equation for the isotropic turbulent energy dissipation rate in the far-wake of a circular cylinder. J Fluid Mech 784:109–129MathSciNetCrossRefGoogle Scholar
  32. 32.
    Antonia RA, Djenidi L, Danaila L, Tang SL (2017) Small scale turbulence and the finite Reynolds number effect. Phys Fluids 29:020715CrossRefGoogle Scholar
  33. 33.
    Metzger M, McKeon BJ, Holmes H (2007) The near-neutral atmospheric surface layer: turbulence and non-stationarity. Phil Trans R Soc Lond A 365:859–876CrossRefGoogle Scholar
  34. 34.
    Djenidi L, Antonia RA, Talluru MK, Abe H (2017) Skewness and flatness factors of the longitudinal velocity derivative in wall-bounded flows. Phys Rev Fluids 2:064608Google Scholar
  35. 35.
    Sreenivasan KR, Dhruva B (1998) Is there scaling in high-Reynolds-number turbulence? Prog Theor Phys Suppl 130:103–120MathSciNetCrossRefGoogle Scholar
  36. 36.
    Sheih CM, Tennekes H, Lumley JL (1971) Airborne hot-wire measurements of the small-scale structure of atmospheric turbulence. Phys Fluids 14:201–215CrossRefGoogle Scholar
  37. 37.
    Grant HL, Stewart RW, Moilliet A (1962) Turbulence spectra from a tidal channel. J Fluid Mech 12:241–268CrossRefGoogle Scholar
  38. 38.
    Antonia RA, Zhou T, Danaila L, Anselmet F (2000) Streamwise inhomogeneity of decaying grid turbulence. Phys Fluids 12:3086CrossRefGoogle Scholar
  39. 39.
    Thiesset F, Antonia RA, Djenidi L (2014) Consequences of self-preservation on the axis of a turbulent round jet. J Fluid Mech 748(R2)Google Scholar
  40. 40.
    Danaila L, Anselmet F, Zhou T, Antonia RA (2001) Turbulent energy scale-budget equations in a fully developed channel flow. J Fluid Mech 430:87–109CrossRefGoogle Scholar
  41. 41.
    Antonia RA, Djenidi L, Danaila L (2014) Collapse of the turbulent dissipation range on Kolmogorov scales. Phys Fluids 26:045105CrossRefGoogle Scholar
  42. 42.
    Djenidi L, Tardu SF, Antonia RA, Danaila L (2014) Breakdown of Kolmogorov’s first similarity hypothesis in grid turbulence. J Turb 15:596–610CrossRefGoogle Scholar
  43. 43.
    Pearson BR, Antonia RA (2001) Reynolds-number dependence of turbulent velocity and pressure increments. J Fluid Mech 444:343–382CrossRefGoogle Scholar
  44. 44.
    Pope SB (2000) Turbulent flows. Cambridge University PressGoogle Scholar
  45. 45.
    Bos WJT, Chevillard L, Scott JF, Rubinstein R (2012) Reynolds number effect on the velocity increment skewness in isotropic turbulence. Phys Fluids 24:015108CrossRefGoogle Scholar
  46. 46.
    Tsuji Y, Ishihara T (2003) Similarity scaling of pressure fluctuation in turbulence. Phys Rev E 68:026309CrossRefGoogle Scholar
  47. 47.
    Meldi M, Sagaut P (2013) Pressure statistics in self-similar freely decaying isotropic turbulence. J Fluid Mech 717:R2CrossRefGoogle Scholar
  48. 48.
    Tang SL, Antonia RA, Djenidi L, Danaila L, Zhou Y (2017) Finite Reynolds number effect on the scaling range behavior of turbulent longitudinal velocity structure functions. J Fluid Mech 820:341–369MathSciNetCrossRefGoogle Scholar
  49. 49.
    Djenidi L, Antonia RA, Danaila L, Tang SL (2017) A note on the velocity derivative flatness factor in decaying HIT. Phys Fluids 29:051702Google Scholar
  50. 50.
    Tang SL, Antonia RA, Djenidi L, Danaila L, Zhou Y (2017) Reappraisal of the velocity derivative flatness factor in various turbulent flows. J Fluid Mech (in revision)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • R. A. Antonia
    • 1
  • S. L. Tang
    • 1
  • L. Danaila
    • 3
  • L. Djenidi
    • 2
  • Y. Zhou
    • 1
  1. 1.Institute for Turbulence-Noise-Vibration Interaction and ControlShenzhen Graduate School, Harbin Institute of TechnologyShenzhenPeople’s Republic of China
  2. 2.School of EngineeringUniversity of NewcastleNSWAustralia
  3. 3.CORIA CNRS UMR 6614, Université de Rouen NormandieSaint Etienne du RouvrayFrance

Personalised recommendations