Production Scheduling Tools to Prevent and Repair Disruptions in MRCPSP

  • Angela Hsiang-Ling Chen
  • Yun-Chia Liang
  • Jose David Padilla
Conference paper


Companies invest countless hours in planning project execution because it is a crucial component for their growth. However, regardless of all the considerations taken in the planning stage, uncertainty inherent to project execution leads to schedule disruptions, and even renders projects unfeasible. There is a vast amount of studies for generating baseline (predictive) schedules, yet, the literature regarding reactive scheduling for the Multi-Mode Resource Constrained Project Scheduling Problem (MRCPSP) is scant with only two previous studies found at the time of writing. In contrast, schedule disruption management has been thoroughly studied in the mass production environment, and regardless of the difficulties encountered, they will almost certainly be required to meet the levels planned. With this in mind, this study proposes an integrative (proactive and reactive) scheduling framework that uses the experience and methodologies developed in the production scheduling environment and apply it to the MRCPSP. The purpose of this framework is to be used on further empirical research.


MRCPSP Proactive—Reactive scheduling Proactive scheduling Project management Project scheduling framework Reactive scheduling 



This work was partially supported by the Ministry of Science and Technology Taiwan grants: [MOST103-2221-E-253-005 and MOST104-2221-E-253-002].


  1. 1.
    H. Aytug, M.A. Lawley, K. McKay, S. Mohan, R. Uzsoy, Executing production schedules in the face of uncertainties: a review and some future directions. Eur. J. Operation. Res. 161(1), 86–110 (2005)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    S.D. Wu, R.H. Storer, P.C. Chang, One machine rescheduling heuristics with efficiency and stability as criteria. Comput. Operation. Res. 20, 1–14 (1993)CrossRefMATHGoogle Scholar
  3. 3.
    W. Herroelen, R. Leus, Project scheduling under uncertainty-survey and research potentials. Eur. J. Operation. Res. 165(2), 289–306 (2005)CrossRefMATHGoogle Scholar
  4. 4.
    J.R. Turner, R. Müller, On the nature of the project as a temporary organization. Int. J. Project Manag. 21:1–8 (2003)Google Scholar
  5. 5.
    A.H.L. Chen, Y.C. Liang, J.D. Padilla, An experimental reactive scheduling framework for the multi-mode resource constrained project scheduling problem, in Lecture Notes in Engineering and Computer Science: Proceedings of the International MultiConference of Engineers and Computer Scientists 2017, pp. 853–858, Hong Kong, 15–17 March 2017Google Scholar
  6. 6.
    L. Ju, Z. Tan, J. Yuan, Q. Tan, H. Li, F. Dong, A bi-level stochastic scheduling optimization model for a virtual power plant connected to a windphotovoltaicenergy storage system considering the uncertainty and demand response. Appl. Energy 171, 184–199 (2016)CrossRefGoogle Scholar
  7. 7.
    H. Wu, M. Shahidehpour, Z. Li, W. Tian, Chance-constrained day-ahead scheduling in stochastic power system operation. IEEE Trans. Power Syst. 29(4), 1583–1591 (2014)CrossRefGoogle Scholar
  8. 8.
    K. Liu, E. Fridman, K.H. Johansson, Networked control with stochastic scheduling. IEEE Trans. Autom. Control 60(11), 3071–3076 (2015)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    T. James, Control of multiclass queueing systems with abandonments and adversarial customers (Lancaster University, Thesis, 2016)Google Scholar
  10. 10.
    D.E. Shobrys, D.C. White, Planning, scheduling and control systems: why can they not work together? Comput. Chem. Eng. 24, 163–173 (2000)CrossRefGoogle Scholar
  11. 11.
    G. Sand, S. Engell, A. Mrkert, R. Schultz, and C. Schulz. Approximation of an ideal online scheduler for a multiproduct batch plant. Comput. Chem. Eng. 24, 361–367 (2000)CrossRefGoogle Scholar
  12. 12.
    R. Palma-Behnke, C. Benavides, F. Lanas, B. Severino, L. Reyes, J. Llanos, D. Saz, A microgrid energy management system based on the rolling horizon strategy. IEEE Trans. Smart Grid 4(2), 996–1006 (2013)CrossRefGoogle Scholar
  13. 13.
    P.C. Lin, R. Uzsoy, Chance-constrained formulations in rolling horizon production planning: an experimental study. Int. J. Product. Res. 54(13), 3927–3942 (2016)CrossRefGoogle Scholar
  14. 14.
    H. Meyr, M. Mann, A decomposition approach for the general lotsizing and scheduling problem for parallel production lines. Eur. J. Operation. Res. 229(3), 718–731 (2013)CrossRefMATHGoogle Scholar
  15. 15.
    B. Ghaddar, J. Naoum-Sawaya, A. Kishimoto, N. Taheri, B. Eck, A lagrangian decomposition approach for the pump scheduling problem in water networks. Eur. J. Operation. Res. 241(2), 490–501 (2015)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    M.L. Blom, A.R. Pearce, P.J. Stuckey, A decomposition-based algorithm for the scheduling of open-pit networks over multiple time periods. Manag. Sci. 62(10), 3059–3084 (2016)CrossRefGoogle Scholar
  17. 17.
    P. Prosser, A reactive scheduling agent. Eleventh Int. Joint Conf. Artificial Intelligen. 89, 1004–1009 (1989)MATHGoogle Scholar
  18. 18.
    X. Chen, Z. Xu, G. Dsa, X. Han, and H. Jiang. Semi-online hierarchical scheduling problems with buffer or rearrangements. Informat. Process. Lett. 113(4), 127–131 (2013)CrossRefGoogle Scholar
  19. 19.
    X. Chen, N. Ding, G. Dsa, X. Han, and H. Jiang. Online hierarchical scheduling on two machines with known total size of low-hierarchy jobs. Int. J. Comput. Mathemat. 92(5), 873–881 (2015)CrossRefGoogle Scholar
  20. 20.
    A.A. Bhattacharya, D. Culler, E. Friedman, A. Ghodsi, S. Shenker, I. Stoica. Hierarchical scheduling for diverse datacenter workloads. in Proceedings of the 4th Annual Symposium on Cloud Computing, p. 4. ACM (2013)Google Scholar
  21. 21.
    J.F. O’Kane, A knowledge-based system for reactive scheduling decision-making in FMS. J. Intelligen. Manufact. 11(5), 461–474 (2000)CrossRefGoogle Scholar
  22. 22.
    I. Motawa, A. Almarshad, A knowledge-based BIM system for building maintenance. Automat. Construct. 29, 173–182 (2013)CrossRefGoogle Scholar
  23. 23.
    Y. Sotskov, N.Y. Sotskova, F. Werner, Stability of an optimal schedule in a job shop. Omega 25(4), 397–414 (1997)CrossRefGoogle Scholar
  24. 24.
    F. Guinand, A. Moukrim, E. Sanlaville, Sensitivity analysis of tree scheduling on two machines with communication delays. Parallel Comput. 30(1), 103–120 (2004)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Z. Jia, M.G. Ierapetritou, Short-term scheduling under uncertainty using MILP sensitivity analysis. Indust. Eng. Chem. Res. 43, 3782–3791 (2004)CrossRefGoogle Scholar
  26. 26.
    S. Maqsood, S. Noor, M.K. Khan, A. Wood, Hybrid genetic algorithm (GA) for job shop scheduling problems and its sensitivity analysis. Int. J. Intelligen. Syst. Technol. Appl. 11(1–2), 49–62 (2012)Google Scholar
  27. 27.
    J.C. Thiele, W. Kurth, V. Grimm, Facilitating parameter estimation and sensitivity analysis of agent-based models: a cookbook using NetLogo and ’R’. J. Artif. Soc. Social Simulat. 17(3), 11 (2014)CrossRefGoogle Scholar
  28. 28.
    A. Muzhikyan, A.M. Farid, K. Youcef-Toumi, An enterprise control assessment method for variable energy resource-induced power system imbalances 2014;Part II: Parametric sensitivity analysis. IEEE Trans. Indust. Electron. 62(4), 2459–2467 (2015)CrossRefGoogle Scholar
  29. 29.
    N.G. Hall, M.E. Posner, Sensitivity analysis for scheduling problems. J. Schedul. 7(1), 49–83 (2004)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Z.K. Li, M. Ierapetritou, Process scheduling under uncertainty: review and challenges. Comput. Chem. Eng. 32, 715–727 (2008)CrossRefGoogle Scholar
  31. 31.
    J. Dorn, R. Kerr, G. Thalhammer, Reactive scheduling: improving robustness of schedules and restricting the effects of shop floor disturbances by fuzzy reasoning. Int. J. Human Comput. Studies 42, 687–704 (1995)CrossRefMATHGoogle Scholar
  32. 32.
    M. Hapke, A. Jaskievicz, R. Slowinski, Fuzzy project scheduling system for software development. Fuzzy Sets Syst. 21, 101–117 (1994)MathSciNetCrossRefGoogle Scholar
  33. 33.
    S.A. Torabi, N. Sahebjamnia, S.A. Mansouri, M. Aramon, Bajestani. A particle swarm optimization for a fuzzy multi-objective unrelated parallel machines scheduling problem. Appl. Soft Comput. 13(12), 4750–4762 (2013)CrossRefGoogle Scholar
  34. 34.
    W.C. Yeh, P.J. Lai, W.C. Lee, M.C. Chuang, Parallel-machine scheduling to minimize makespan with fuzzy processing times and learning effects. Informat. Sci. 269, 142–158 (2014)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    I. Bakry, O. Moselhi, T. Zayed, Fuzzy dynamic programming for optimized scheduling of repetitive construction projects. in IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013 Joint, pp. 1172–1176 (2013)Google Scholar
  36. 36.
    V. Dixit, R.K. Srivastava, A. Chaudhuri, Procurement scheduling for complex projects with fuzzy activity durations and lead times. Comput. Indust. Eng. 76, 401–414 (2014)CrossRefGoogle Scholar
  37. 37.
    J. Xu, Y. Ma, X. Zehui, A bilevel model for project scheduling in a fuzzy random environment. IEEE Trans. Syst. Man Cybernet. 45(10), 1322–1335 (2015)CrossRefGoogle Scholar
  38. 38.
    Y. Xu, L. Wang, S.Y. Wang, M. Liu, An effective teaching-learning-based optimization algorithm for the flexible job-shop scheduling problem with fuzzy processing time. Neurocomputing 148, 260–268 (2015)CrossRefGoogle Scholar
  39. 39.
    M.A. Al-Fawzan, M. Haouari, A bi-objective model for robust resource-constrained project scheduling. Int. J. Product. Econom. 96, 175–187 (2005)CrossRefGoogle Scholar
  40. 40.
    H. Gao, Building robust schedules using temporal protection - an empirical study of constraint based scheduling under machine failure uncertainty (University of Toronto, Thesis, 1995)Google Scholar
  41. 41.
    E. Goldratt. Critical Chain. The North River Press (1997)Google Scholar
  42. 42.
    A. Davenport, C. Gefflot, C. Beck, Slack-based techniques for robust schedules. in Sixth European Conference on Planning, pp. 43–49 (2014)Google Scholar
  43. 43.
    P. Kobyalanski, D. Kutcha, A note on the paper by M. A. Al-Fawzan and M. Haouari about A bi-objective model for robust resource-constrained project scheduling. Int. J. Product. Econom. 107, 496–501 (2007)CrossRefGoogle Scholar
  44. 44.
    H. Chtourou, M. Haouari, A two stage priority rule based algorithm for robust resource constrained project scheduling. Comput. Indust. Eng. 55(1), 183–194 (2008)CrossRefGoogle Scholar
  45. 45.
    A.H.L. Chen, Y.C. Liang, J.D. Padilla, An entropy-based upper bound methodology for robust predictive multi-mode RCPSP schedules. Entropy 16, 5032–5067 (2014)CrossRefGoogle Scholar
  46. 46.
    J. Rezaeian, F. Soleimani, S. Mohaselafshary, A. Arab, Using a meta-heuristic algorithm for solving the multi-mode resource-constrained project scheduling problem. Int. J. Operation. Res. 24(1), 1–16 (2015)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    P. Lamas, E. Demeulemeester, A purely proactive scheduling procedure for the resource-constrained project scheduling problem with stochastic activity durations. J. Sched. 19(4), 409–429 (2016)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    O. Alagz, M. Azizoglu, Rescheduling of identical parallel machines under machine eligibility constraints. Eur. J. Operation. Res. 149(3), 523–532 (2003)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    M.S. Akturk, E. Gorgulu, Match-up scheduling under a machine breakdown. Eur. J. Operation. Res. 112, 81–97 (1999)CrossRefMATHGoogle Scholar
  50. 50.
    P. Mauguire, J.C. Billaut, C. Artigues, Grouping jobs on a single machine with heads and tails to represent a family of dominant schedules. In 8th Workshop on Project Management and Scheduling, Valencia, pp. 3–5 (2002)Google Scholar
  51. 51.
    F. Quesnel, A. Lbre, M. Sdholt, Cooperative and reactive scheduling in large-scale virtualized platforms with DVMS. Concurr. Comput. Pract. Exp. 25(12), 1643–1655 (2013)CrossRefGoogle Scholar
  52. 52.
    L. Nie, L. Gao, P. Li, X. Li, A GEP-based reactive scheduling policies constructing approach for dynamic flexible job shop scheduling problem with job release dates. J. Intelligen. Manufact. 24(4), 763–774 (2013)CrossRefGoogle Scholar
  53. 53.
    S. Van de Vonder, Proactive-reactive procedures for robust project scheduling (Katholieke Universiteit Leuven, Thesis, 2006)MATHGoogle Scholar
  54. 54.
    S. Van de Vonder, F. Ballestn, E. Demeulemeester, and W. Herroelen. Heuristic procedures for reactive project scheduling. Comput. Indust. Eng. 52(1), 11–28 (2007)CrossRefGoogle Scholar
  55. 55.
    S. Van de Vonder, E. Demeulemeester, W. Herroelen, Proactive heuristic procedures for robust project scheduling: an experimental analysis. Eur. J. Operation. Res. 189(3), 723–733 (2008)CrossRefMATHGoogle Scholar
  56. 56.
    O. Lambrechts, E. Demeulemeester, W. Herroelen, Proactive and reactive strategies for resource-constrained project scheduling with uncertain resource availabilities. J. Sched. 11(2), 121–136 (2008)MathSciNetCrossRefMATHGoogle Scholar
  57. 57.
    O. Lambrechts, E. Demeulemeester, W. Herroelen, A tabu search procedure for developing robust predictive project schedules. Int. J. Product. Econom. 111(2), 496–508 (2007)Google Scholar
  58. 58.
    G. Zhu, J. Bard, G. Yu, Disruption management for resource-constrained project scheduling. J. Operation. Res. Soc. 56(4), 365–381 (2005)CrossRefMATHGoogle Scholar
  59. 59.
    F. Deblaere, E. Demeulemeester, W. Herroelen, Reactive scheduling in the multi-mode RCPSP. Comput. Operation. Res. 38(1), 63–74 (2011)MathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    W. Herroelen. A Risk Integrated Methodology for Project Planning Under Uncertainty, book section 9, pp. 203–217. Springer, New York (2014)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Angela Hsiang-Ling Chen
    • 1
  • Yun-Chia Liang
    • 2
  • Jose David Padilla
    • 2
  1. 1.Department of Business AdministrationNanya Institute of TechnologyTaoyuanTaiwan
  2. 2.Department of Industrial Engineering and ManagementYuan Ze UniversityTaoyuanTaiwan

Personalised recommendations