IT-Security Concept Cornerstones in Industrie 4.0

  • Yübo Wang
  • Riham Fakhry
  • Sebastian Rohr
  • Reiner Anderl
Conference paper

Abstract

The majority of enterprises identified the potential and the benefits of Industrie 4.0. However, many companies consider Industrie 4.0 more as a security challenge than an opportunity to optimize their processes or an enabler for new business models. Therefore effective security methods to protect the Industrie 4.0 systems and its associated values and assets are needed. Based on the connectivity infrastructure in the shopfloor, the diversity in the corporate landscape of the global mechanical and plant engineering ultimately causes that every enterprise has to develop its own way of production IT security management. The purpose of the followed sections is to analyze the challenges of IT security in Industrie 4.0 and to identify and combine the requirements from manufacturing automation, mechanical engineering, process engineering and the properties of cyber-physical systems with well-established core elements of IT security descriptions. A process model, which consists of a data model and an algorithm as its core element is developed to consider the challenges and to cope with the requirements. As a prototypical implementation security measures and their properties are presented in a technological Industrie 4.0 Toolbox IT-Security, as the result of the whole process and data model.

Keywords

CPS Defense in depth Industrie 4.0 IT security Security by design Toolbox 

References

  1. 1.
    Y. Wang, R. Fakhry, R. Anderl, Combined secure process and data model for IT-Security in Industrie 4.0, in Proceedings of the International MultiConference of Engineers and Computer Scientists 2017. Lecture Notes in Engineering and Computer Science, (Hong Kong, 15–17 Mar 2017), pp. 846–852Google Scholar
  2. 2.
    H. Kagermann, W. Wahlster, J. Helbig, Recommendations for implementing the strategic initiative Industrie 4.0—securing the future of German manufacturing industry, Apr 2013Google Scholar
  3. 3.
    E. Abele, R. Anderl, J. Metternich, A. Wank, O. Anokhin, A. Arndt, T. Meudt, M. Sauer, Effiziente Fabrik 4.0—Einzug von Industrie 4.0 in bestehende Produktionssysteme, published in ZWF—Zeitschrift für wirtschaftlichen Fabrikbetrieb, pp. 150–153 (2015)Google Scholar
  4. 4.
    BMBF, Zukunftsbild Industrie 4.0 (2014). http://www.bmbf.de/pubRD/Zukunftsbild_Industrie_40.pdf. Accessed 17 Nov 2016
  5. 5.
    BITKOM, VDMA, ZVEI, Umsetzungsstrategie Industrie 4.0—Ergebnisbericht der Plattform Industrie 4.0, April 2015Google Scholar
  6. 6.
    R. Anderl, Industrie 4.0—technological approaches, use cases, and implementation, published in at—Automatisierungstechnik, vol. 63, pp. 753–765 (2015)Google Scholar
  7. 7.
    BMWi, IT-Sicherheit für Industrie 4.0 (2016). http://www.bmwi.de/BMWi/Redaktion/PDF/Publikationen/Studien/it-sicherheit-fuer-industrie-4-0-. Accessed 30 Nov 2016
  8. 8.
    T. Bauernhansl, M. ten Hompel, B. Vogel-Heuser, Industrie 4.0 in Produktion, Automatisierung und Logistik. Wiesbaden (Springer Fachmedien Wiesbaden, 2014)Google Scholar
  9. 9.
    BMWi, Autonomik für die Industrie 4.0 (2016), http://www.autonomik.de/de/1003.php. Accessed 10 July 2016
  10. 10.
    K. Böttinger, B. Filipovic, M. Hutle, S. Rohr, Leitfaden Industrie 4.0 Security—Handlungs-empfehlungen für den Mittelstand. Frankfurt am Main, VDMA (2016)Google Scholar
  11. 11.
    T. Phinney, IEC 62443: Industrial Network and System Security, Published in ISA (2016). http://www.isa.org/autowest/pdf/Industrial-Networking-and-Security/Phinneydone.pdf. Accessed 10 Nov 2016
  12. 12.
    D. Kuipers, M. Fabro, Control Systems Cyber Security: Defense in Depth Strategies—Recommended Best Practice: Defense in Depth, INL-Idaho National Laboratory (2006)Google Scholar
  13. 13.
    Homeland Security, Recommended Practice: Improving Industrial Control Systems Cybersecurity with Defense-In-Depth Strategies—Control Systems Security: National Cyber Security Division (2009)Google Scholar
  14. 14.
    A. Cardenas, S. Amin, B. Sinopoli, A. Giani, A. Perrig, S. Sastry, Challenges for Securing Cyber Physical Systems (2016), https://chess.eecs.berkeley.edu/pubs/601/. Accessed 10 Nov 2016
  15. 15.
    Plattform Industrie 4.0, Neue Chancen für unsere Produktion—17 Thesen des Wissenschaftlichen Beirats der Plattform Industrie 4.0 (2016), http://www.its-owl.de/fileadmin/PDF/Industrie_4.0/Thesen_des_wissenschaftlichen_Beirats_Industrie_4.0.pdf. Accessed 19 Nov 2016
  16. 16.
    R. Anderl, A. Picard, Y. Wang, J. Fleischer, S. Dosch, B. Klee, J. Bauer, Guideline Industrie 4.0—Guiding principles for the implementation of Industrie 4.0 in small and medium sized businesses, VDMA Forum Industrie 4.0, Frankfurt (2015). ISBN: 978-3-8163-0687-0Google Scholar
  17. 17.
    Y. Wang, G. Wang, R. Anderl, Generic Procedure Model to Introduce Industrie 4.0 in Small and Medium-sized Enterprises, in Proceedings of the World Congress on Engineering and Computer Science 2016. Lecture Notes in Engineering and Computer Science (San Francisco, USA, 19–21 Oct 2016), pp. 971–976. ISBN: 978-988-14048-2-4Google Scholar
  18. 18.
    K. Stouffer, J. Falco, K. Scarfone, Guide to Industrial Control Systems (ICS) Security—NIST Special Publication 800–82. Supervisory Control and Data Acquisition (SCADA) systems, Distributed Control Systems (DCS), and other control system configurations such as Programmable Logic Controllers (PLC): Recommendations of the National Institute of Standards and Technology. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.353.2376. Accessed 15 Nov 2016
  19. 19.

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yübo Wang
    • 1
  • Riham Fakhry
    • 2
  • Sebastian Rohr
    • 2
  • Reiner Anderl
    • 1
  1. 1.Department of Computer Integrated Design at the Technical University DarmstadtDarmstadtGermany
  2. 2.GmbHGroß-BieberauGermany

Personalised recommendations