A Comparison of Different Quasi-Newton Acceleration Methods for Partitioned Multi-Physics Codes

Conference paper


In many cases, different physical systems interact, which translates to coupled mathematical models. We only focus on methods to solve (strongly) coupled problems with a partitioned approach, i.e. where each of the physical problems is solved with a specialized code that we consider to be a black box solver. Running the black boxes one after another, until convergence is reached, is a standard but slow solution technique, known as non-linear Gauss-Seidel iteration. A recent interpretation of this approach as a root-finding problem has opened the door to acceleration techniques based on Quasi-Newton methods that can be “strapped onto” the original iteration loop without modification to the underlying code. In this paper, we analyze the performance of different acceleration techniques on different multi-physics problems.


Acceleration Fluid-structure interaction Iterative method Partitioned method Root-finding Quasi-Newton method 


  1. 1.
    A.C. Aitken, On Bernouilli’s numerical solution of algebraic equations. Proc. Roy. Soc. Edinb. 46, 289–305 (1926)CrossRefMATHGoogle Scholar
  2. 2.
    A.E.J. Bogaers, S. Kok, B.D. Reddy, T. Franz, Quasi-Newton methods for implicit black-box FSI coupling. Comput. Methods Appl. Mech. Eng. 279, 113–132 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    A.E.J. Bogaers, S. Kok, B.D. Reddy, T. Franz, An evaluation of quasi-Newton methods for application to FSI problems involving free surface flow and solid body contact. Comput. Struct. 173, 71–83 (2016)CrossRefGoogle Scholar
  4. 4.
    C.G. Broyden, A class of methods for solving nonlinear simultaneous equations. Math. Comput. 19, 577–593 (1965)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    C.G. Broyden, Quasi-Newton methods and their applications to function minimization. Math. Comput. 21, 368–381 (1967)CrossRefMATHGoogle Scholar
  6. 6.
    J. Degroote, K.-J. Bathe, J. Vierendeels, Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction. Comput. Struct. 87(11), 793–801 (2009)CrossRefGoogle Scholar
  7. 7.
    J. Degroote, R. Haelterman, S. Annerel, P. Bruggeman, J. Vierendeels, Performance of partitioned procedures in fluid-structure interaction. Comput. Struct. 88(7), 446–457 (2010)CrossRefGoogle Scholar
  8. 8.
    J.E. Dennis, J.J. Moré, Quasi-Newton methods: motivation and theory. SIAM Rev. 19, 46–89 (1977)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    J.E. Dennis, R.B. Schnabel, Least change secant updates for Quasi-Newton methods. SIAM Rev. 21, 443–459 (1979)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    T. Eirola, O. Nevanlinna, Accelerating with rank-one updates. Linear Algebra Appl. 121, 511–520 (1989)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    H.-R. Fang, Y. Saad, Two classes of multisecant methods for nonlinear acceleration. Numer. Linear Algebra Appl. 16(3), 197–221 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    A. Friedlander, M.A. Gomes-Ruggiero, D.N. Kozakevich, J.M. Martinez, S.A. dos Santos, Solving nonlinear systems of equations by means of Quasi-Newton methods with a nonmonotone strategy. Optim. Methods Softw. 8, 25–51 (1997)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    J.-F. Gerbeau, M. Vidrascu et al., A Quasi-Newton algorithm based on a reduced model for Fluid-structure interaction problems in blood flows. ESAIM: Math. Model. Numer. Anal. 37(4), 631–647 (2003)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    R. Haelterman, J. Degroote, D. Van Heule, J. Vierendeels, The Quasi-Newton least squares method: a new and fast secant method analyzed for linear systems. SIAM J. Numer. Anal. 47(3), 2347–2368 (2009)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    R. Haelterman, J. Degroote, D. Van Heule, J. Vierendeels, On the similarities between the Quasi-Newton inverse least squares method and GMRes. SIAM J. Numer. Anal. 47(6), 4660–4679 (2010)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    R. Haelterman, J. Petit, H. Bruyninckx, J. Vierendeels, On the non-singularity of the Quasi-Newton-least squares method. J. Comput. Appl. Math. 257, 129–131 (2014)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    R. Haelterman, B. Lauwens, F. Van Utterbeeck, H. Bruyninckx, J. Vierendeels, On the similarities between the Quasi-Newton least squares method and GMRes. J. Comput. Appl. Math. 273, 25–28 (2015)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    R. Haelterman, B. Lauwens, H. Bruyninckx, J. Petit, Equivalence of QNLS and BQNLS for affine problems. J. Comput. Appl. Math. 278, 48–51 (2015)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    R. Haelterman, D. Van Eester, D. Verleyen, Accelerating the solution of a physics model inside a Tokamak using the (Inverse) Column Updating Method. J. Comput. Appl. Math. 279, 133–144 (2015)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    R. Haelterman, D. Van Eester, S. Cracana, Does anderson always accelerate picard? in 14th Copper Mountain Conference on Iterative Methods (Copper Mountain, USA, 2016)Google Scholar
  21. 21.
    R. Haelterman, A. Bogaers, J. Degroote, S. Cracana, Coupling of partitioned physics codes with Quasi-Newton methods, in Lecture Notes in Engineering and Computer Science: Proceedings of The International MultiConference of Engineers and Computer Scientists 2017, 15–17 Mar 2017, Hong Kong, pp. 750–755, 2017Google Scholar
  22. 22.
    C.T. Kelley, Iterative methods for linear and nonlinear equations (Frontiers in Applied Mathematics, SIAM, Philadelphia, 1995)CrossRefMATHGoogle Scholar
  23. 23.
    V.L.R. Lopes, J.M. Martinez, Convergence properties of the Inverse Column-Updating Method. Optim. Methods Softw. 6, 127–144 (1995)CrossRefGoogle Scholar
  24. 24.
    J.M. Martinez, L.S. Ochi, Sobre dois metodos de broyden. Mathemática Aplicada e Comput. 1(2), 135–143 (1982)Google Scholar
  25. 25.
    J.M. Martinez, A Quasi-Newton method with modification of one column per iteration. Computing 33, 353–362 (1984)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    J.M. Martinez, M.C. Zambaldi, An Inverse Column-Updating Method for solving large-scale nonlinear systems of equations. Optim. Methods Softw. 1, 129–140 (1992)CrossRefGoogle Scholar
  27. 27.
    J.M. Martinez, On the convergence of the column-updating method. Comput. Appl. Math. 12(2), 83–94 (1993)MathSciNetMATHGoogle Scholar
  28. 28.
    J.M. Martinez, Practical Quasi-Newton method for solving nonlinear systems. J. Comput. Appl. Math. 124, 97–122 (2000)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    S. Turek, J. Hron, Proposal for numerical Benchmarking of Fluid-structure interaction between an elastic object and laminar incompressible flow, in Fluid-Structure Interaction, ed. by H.-J. Bungartz, M. Schäfer, Michael, Series “Modelling, Simulation, Optimisation” Vol. 53 (Springer, Berlin, 2006), pp. 371–385. ISSN:1439-7358Google Scholar
  30. 30.
    J. Vierendeels, Implicit coupling of partitioned fluid-structure interaction solvers using reduced-order models, in Fluid-Structure Interaction, Modelling, Simulation, Optimization, ed. by H.-J. Bungartz, M. Sch äfer, Lecture Notes in Computer Science Engineering, vol. 53 (Springer, Berlin, 2006), pp. 1–18Google Scholar
  31. 31.
    J. Vierendeels, L. Lanoye, J. Degroote, P. Verdonck, Implicit coupling of partitioned fluid-structure interaction problems with reduced order models. Comput. Struct. 85, 970–976 (2007)CrossRefGoogle Scholar
  32. 32.
    E. Walhorn, A. Kölke, B. Hübner, D. Dinkler, Fluid-structure coupling within a monolithic model involving free surface flows. Comput. Struct. 83(25), 2100–2111 (2005)CrossRefGoogle Scholar
  33. 33.
    U.M. Yang, A family of preconditioned iterative solvers for sparse linear systems. Ph.D. thesis, Department of Computer Science, University of Illinois, Urbana-Champaign, 1995Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Rob Haelterman
    • 1
  • Alfred Bogaers
    • 2
  • Joris Degroote
    • 3
  1. 1.Department of MathematicsRoyal Military AcademyBrusselsBelgium
  2. 2.Council for Scientific and Industrial ResearchAdvanced Mathematical Modelling Modelling and Digital SciencesPretoriaSouth Africa
  3. 3.Department of Flow Heat and Combustion MechanicsGhent UniversityGhentBelgium

Personalised recommendations