Skip to main content

Genetically Modified Organisms and Its Impact on the Enhancement of Bioremediation

  • Chapter
  • First Online:
Bioremediation: Applications for Environmental Protection and Management

Abstract

Bioremediation is a process of degrading the environmental contaminants, that are introduced accidentally or purposely which cause hazardous effect on earth and harm the normal life process. The conversion of these contaminants into less toxic forms is the goal of bioremediation process that can be achieved by the use of microorganisms. The bioremediation approaches have more advantages when compared with the traditional methods, as it can be directly implemented at the targeted contaminant site. Even though some bacteria and fungus were employed to decompose the chemical compounds, but they have only limited ratio to metabolize the hydrocarbons on their own. The genetically modified organisms are applied nowadays in bioremediation process for effective removal of contaminants, where the indigenous microbes cannot degrade. Genetically modified microorganisms (GMOs) play an important role in remediating the industrial waste, reduce the toxicity of some hazardous compounds, and also help in removal of pollution by hydrocarbons and petrol discharges. A variety of molecular tools such as molecular cloning, horizontal transfer of DNA in bacteria, electroporation, protoplast transformation, biolistic transformation, conjugation and transformation of competent cells are available for the successful construction of GMOs. Transfer of gene into the bacteria makes it as a novel strain, for eliminating the hydrocarbon contaminants from the environment in minimal time. Similarly, removal of compounds such as xylene, toluene, octane, naphthalene and salicylate is coded on bacterial plasmids for successful degradation of the environment. This chapter represents the applications of genetically modified organisms in bioremediation processes, molecular tools used for construction of GMOs, pros and cons, ethical issues and laws governing the application of GMOs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreolli M, Lampis S, Brignoli P, Vallini G (2015) Bioaugmentation and biostimulation as strategies for the bioremediation of a burned woodland soil contaminated by toxic hydrocarbons: a comparative study. J Environ Manage 153:121–131

    Article  CAS  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A et al (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588

    Article  CAS  Google Scholar 

  • Bathe S, Schwarzenbeck N, Hausner M (2009) Bioaugmentation of activated sludge towards 3-chloroaniline removal with a mixed bacterial population carrying a degradative plasmid. Bioresour Technol 100:2902–2909

    Article  CAS  Google Scholar 

  • Bento FM, Camargo FAO, Okeke BC, Frankenberger WT (2005) Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour Technol 96:1049–1055

    Article  CAS  Google Scholar 

  • Boldt TS, Sørensen J, Karlson U, Molin S, Ramos C (2004) Combined use of different Gfp reporters for monitoring single-cell activities of a genetically modified PCB degrader in the rhizosphere of alfalfa. FEMS Microbiol Ecol 48:139–148

    Article  CAS  Google Scholar 

  • Boye M, Ahl T, Molin S (1995) Application of strain-specific rRNA oligonucleotide probe targeting Pseudomonas fluorescens Ag1 in a mesocosm study of bacterial release into the environment. Appl Environ Microbiol 61:1384–1390

    CAS  Google Scholar 

  • Brim H, McFarlan SC, Fredrickson JK et al (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 18:85–90

    Article  CAS  Google Scholar 

  • Chen J, Qin J, Zhu Y-G, de Lorenzo V, Rosen BP (2013) Engineering the soil bacterium Pseudomonas putida for arsenic methylation. Appl Environ Microbiol 79:4493–4495

    Article  CAS  Google Scholar 

  • Cho J-C, Tiedje JM (2002) Quantitative detection of microbial genes by using DNA microarrays. Appl Environ Microbiol 68:1425–1430

    Article  CAS  Google Scholar 

  • Chuluun B, Shah SH, Rhee J (2014) Bioaugmented phytoremediation: a strategy for reclamation of diesel oil-contaminated soils. Int J Agric Biol 16:624–628

    Google Scholar 

  • De Lorenzo V, Herrero M, Sanchez JM, Timmis KN (1998) Minitransposons in microbial ecology and environmental biotechnology. FEMS Microbiol Ecol 27:211–224

    Article  Google Scholar 

  • Dechesne A, Pallud C, Bertolla F, Grundmann GL (2005) Impact of the microscale distribution of Pseudomonas strain introduced into soil on potential contacts with indigenous bacteria. Appl Environ Microbiol 71:8123–8131

    Article  CAS  Google Scholar 

  • Dejonghe W, Goris J, Fantroussi SE et al (2000) Effect of dissemination of 2,4- dichlorophenoxyacetic acid (2,4-D) degradation plasmids on 2,4-D degradation and on bacterial community structure in two different soil horizons. Appl Environ Microbiol 66:3297–3304

    Article  CAS  Google Scholar 

  • Feliciano J, Liu Y, Daunert S (2006) Novel reporter gene in a fluorescent-based whole cell sensing system. Biotechnol Bioeng 93:989–997

    Article  CAS  Google Scholar 

  • Filonov AE, Akhmetov LI, Puntus IF et al (2005) The construction and monitoring of genetically tagged, plasmid-containing, naphthalene-degrading strains in soil. Microbiol 74:526–532

    Article  CAS  Google Scholar 

  • Hedenstierna KOF, Lee Y-H, Yang Y, Fox GE (1993) A prototype stable RNA identification cassette for monitoring plasmids of genetically engineered microorganisms. Syst Appl Microbiol 16:280–286

    Article  CAS  Google Scholar 

  • Herrero M, de Lorenzo V, Timmis KN (1990) Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol 172:6557–6567

    Article  CAS  Google Scholar 

  • Jin R, Yang H, Zhang A, Wang J, Liu G (2009) Bioaugmentation on decolorization of C.I. direct blue 71 using genetically engineered strain Escherichia coli JM109 (pGEX-AZR). J Hazard Mater 163:1123–1128

    Article  CAS  Google Scholar 

  • Jussila MM, Zhao J, Suominen L, Lindström K (2007) TOL plasmid transfer during bacterial conjugation in vitro and rhizoremediation of oil compounds in vivo. Environ Pollut 146:510–524

    Article  CAS  Google Scholar 

  • Kang DG, Choi SS, Cha HJ (2006) Enhanced biodegradation of toxic organophosphate compounds using recombinant Escherichia coli with sec pathway driven periplasmic secretion of organophosphorous hydrolase. Biotechnol Prog 22:406–410

    Article  CAS  Google Scholar 

  • Krystofova O, Zitka O, Krizkova S et al (2012) Accumulation of cadmium by transgenic tobacco plants (Nicotiana tabacum L.) carrying yeast metallothionein gene revealed by electrochemistry. Int J Electrochem Sci 7:886–907

    CAS  Google Scholar 

  • Massa V, Infantin OA, Radice F et al (2009) Efficiency of natural and engineered bacterial strains in the degradation of 4-chlorobenzoic acid in soil slurry. Int Biodeterior Biodegrad 63:112–115

    Article  CAS  Google Scholar 

  • Mayer S, Stirling A (2002) Finding a precautionary approach to technological developments—lessons for the evaluation of GM crops. J Agric Environ Ethics 15:57–71

    Article  Google Scholar 

  • Menn FM, Easter JP, Sayler GS (2000) Genetically engineered microorganisms and bioremediation. In: Rehm HJ, Reed G (eds) Biotechnology: environmental processes II, vol 11b, 2nd edn. Wiley, Germany

    Google Scholar 

  • Min M-G, Kawabata Z, Ishii N, Takata R, Furukawa K (1998) Fate of a PCBs degrading recombinant Pseudomonas putida AC30 (PMFB2) and its effect on the densities of microbes in marine microcosms contaminated with PCBs. Int J Environ Stud 55:271–285

    Article  Google Scholar 

  • Monti MR, Smania AM, Fabro G, Alvarez ME, Argarana CE (2005) Engineering Pseudomonas fluorescens for biodegradation of 2,4-dinitrotoluene. Appl Environ Microbiol 71:8864–8872

    Article  CAS  Google Scholar 

  • Mrozik A, Piotrowska-Seget Z (2010) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compound. Microbiol Res 165:363–375

    Article  CAS  Google Scholar 

  • Naik MM, Shamim K, Dubey SK (2012) Biological characterization of lead resistant bacteria to explore role of bacterial metallothionein in lead resistance. Curr Sci 103:426–429

    CAS  Google Scholar 

  • Newby DT, Josephson KL, Pepper IL (2000) Detection and characterization of plasmid pJP4 transfer to indigenous soil bacteria. Appl Environ Microbiol 66:290–296

    Article  CAS  Google Scholar 

  • Pandey G, Paul D, Jain RK (2005) Conceptualizing “suicidal genetically engineered microorganisms” for bioremediation applications. Biochem Biophys Res Commun 327:637–639

    Article  CAS  Google Scholar 

  • Paul D, Pandey G, Jain RK (2005) Suicidal genetically engineered microorganisms for bioremediation: need and perspectives. BioEssays 27:563–573

    Article  CAS  Google Scholar 

  • Prakash D, Verma S, Bhatia R, Tiwary BN (2011) Risks and precautions of genetically modified organisms. ISRN Ecol Article ID 369573, 13 p

    Google Scholar 

  • Renninger N, Knopp R, Nitsche H, Clark DS, Keasling JD (2004) Uranyl precipitation by Pseudomonas aeruginosa via controlled polyphosphate metabolism. Appl Environ Microbiol 70:7404–7412

    Article  CAS  Google Scholar 

  • Rodrigues JLM, Kachel A, Aiello MR et al (2006) Degradation of Aroclor 1242 dechlorination products in sediments by Burkholderia xenovorans LB400 (ohb) and Rhodococcus sp. strain RHA1 (fcb). Appl Environ Microbiol 72:2476–2482

    Article  CAS  Google Scholar 

  • Rojas LA, Yanez C, Gonzalez M, Lobos S, Smalla K, Seeger M (2011) Characterization of the metabolically modified heavy metal-resistant Cupriavidus metallidurans strain MSR33 generated for mercury bioremediation. PLoS ONE 6:e17555

    Article  CAS  Google Scholar 

  • Ronchel MC, Ramos JL (2001) Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation. Appl Environ Microbiol 67:2649–2656

    Article  CAS  Google Scholar 

  • Sayler GS, Ripp S (2000) Field applications of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol 11:286–289

    Article  CAS  Google Scholar 

  • Singh A, Billingsley K, Ward O (2006) Composting: a potential safe process for disposal of genetically modified organisms. Crit Rev Biotechnol 26:1–16

    Article  Google Scholar 

  • Sobecky PA, Schell MA, Moran MA, Hodson RE (1996) Impact of a genetically engineered bacterium with enhanced alkaline phosphatase activity on marine phytoplankton communities. Appl Environ Microbiol 62:6–12

    CAS  Google Scholar 

  • Stewart CN Jr, Richards HA, Halfhill MD (2000) Transgenic plants and biosafety: science, misconceptions and public perceptions. Biotechniques 29:832–843

    CAS  Google Scholar 

  • Strong LC, McTavish H, Sadowsky MJ, Wackett LP (2000) Field-scale remediation of atrazine-contaminated soil using recombinant Escherichia coli expressing atrazine chlorohydrolase. Environ Microbiol 2:91–98

    Article  CAS  Google Scholar 

  • Stroo HF (2010) Bioremediation of chlorinated solvent plumes. In: Stroo HF, Ward CH (eds) In situ remediation of chlorinated solvent plumes. Springer, New York, pp 309–324

    Chapter  Google Scholar 

  • Taghavi S, Barac T, Greenberg B et al (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71:8500–8505

    Article  CAS  Google Scholar 

  • Tiedje JM, Colwell RK, Grossman YL (1989) The planned introduction of genetically engineered organisms: ecological considerations and recommendations. Ecology 70:298–315

    Article  Google Scholar 

  • United Nations Environment Programme (1992) Rio declaration on environment and development. In: Proceedings of the United Nations conference on environment and development, Rio de Janeiro, Brazil, June 1992

    Google Scholar 

  • Wasilkowski D, Swedziol Z, Mrozi A (2012) The applicability of genetically modified microorganisms in bioremediation of contaminated environments. Chemik 66:817–826

    CAS  Google Scholar 

  • Widada J, Nojiri H, Omori T (2002) Recent developments in molecular techniques for identification and monitoring of xenobiotic degrading bacteria and their catabolic genes in bioremediation. Appl Microbiol Biotechnol 60:45–59

    Article  CAS  Google Scholar 

  • Wu J-F, Jiang C, Wang B, Liu Z, Liu S (2006) Novel partial reductive pathway for 4-chloronitrobenzene and nitrobenzene degradation in Comamonas sp. strain CNB-1. Appl Environ Microbiol 72:1759–1765

    Article  CAS  Google Scholar 

  • Yang H, Nairn J, Ozias-Akins P (2003) Transformation of peanut using a modified bacterial mercuric ion reductase gene driven by an actin promoter from Arabidopsis thaliana. J Plant Physiol 160:945–952

    Article  CAS  Google Scholar 

  • Yang C, Xu L, Yan L, Xu Y (2010) Construction of a genetically engineered microorganism with high tolerance to arsenite and strong arsenite oxidative ability. J Environ Sci Health A 45:740–745

    Article  CAS  Google Scholar 

  • Zaat SAJ, Slegtenhorst-Eegdeman K, Tommassen J et al (1994) Construction of phoE-caa, a novel PCR- and immunologically detectable marker gene for Pseudomonas putida. Appl Environ Microbiol 60:913–920

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrasekaran Muthukumaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, N.M., Muthukumaran, C., Sharmila, G., Gurunathan, B. (2018). Genetically Modified Organisms and Its Impact on the Enhancement of Bioremediation. In: Varjani, S., Agarwal, A., Gnansounou, E., Gurunathan, B. (eds) Bioremediation: Applications for Environmental Protection and Management. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7485-1_4

Download citation

Publish with us

Policies and ethics