Skip to main content

Modelling Polyketide Synthases and Similar Macromolecular Complexes

  • Chapter
  • First Online:
  • 1287 Accesses

Abstract

Science is slowly unlocking the secrets of the exquisite chemical synthesis capabilities of polyketide synthases (PKSs), as well as other secondary metabolites’ biosynthesis pathways, and learning to re-engineer such pathways to synthesize novel chemical compounds. Research over the last 30 years has involved innovative experiments and bioinformatics focused on a wide range of medicinal compounds ranging from antibiotics to anticholesterol agents. Furthermore, it has been possible to manipulate PKSs to produce novel compounds for pharmaceutical use. However, despite great progress, our knowledge is still sketchy, and experiments continue to be time-consuming and difficult. PKSs, and secondary metabolite biosynthetic pathways in general, provide model systems for developing and testing experimental and bioinformatic tools for synthetic biology application. Bioinformatic and molecular modelling are important for making sense of existing and future experimental data. Bioinformatic and structural modelling can help in several ways: by predicting how manipulations of protein domains might yield viable novel biosynthetic pathways to generate variants of existing chemicals/pharmaceuticals of high value or to allow the synthesis of totally novel compounds, by assisting the discovery of novel gene clusters in genomic and metagenomic data, by predicting the metabolites synthesized by novel gene clusters and by interpreting experimental data to elucidate the rules governing polyketide synthase function, which feeds back into the others on this list.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Altschul SF et al (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  Google Scholar 

  • Anand S, Mohanty D (2012) Modeling holo-ACP:DH and holo-ACP:KR complexes of modular polyketide synthases: a docking and molecular dynamics study. BMC Struct Biol 12(1):10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anand S et al (2010) SBSPKS: structure based sequence analysis of polyketide synthases. Nucleic Acids Res 38:W487–W496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ansari MZ et al (2008) In silico analysis of methyltransferase domains involved in biosynthesis of secondary metabolites. BMC Bioinforma 9:454

    Article  CAS  Google Scholar 

  • Austin MB, Noel JP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20(1):79–110

    Article  CAS  Google Scholar 

  • Bachmann BO, Ravel J (2009) Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. Methods Enzymol 458:181–217

    Article  CAS  PubMed  Google Scholar 

  • Bender C, Rangaswamy V, Loper J (1999) Polyketide production by plant-associated pseudomonads. Annu Rev Phytopathol 37:175–196

    Article  CAS  PubMed  Google Scholar 

  • Broadhurst RW et al (2003) The structure of docking domains in modular polyketide synthases. Chem Biol 10(8):723–731

    Article  CAS  PubMed  Google Scholar 

  • Busche A et al (2012) Characterization of molecular interactions between ACP and halogenase domains in the Curacin A polyketide synthase. ACS Chem Biol 7(2):378–386

    Article  CAS  PubMed  Google Scholar 

  • Caboche S et al (2008) NORINE: a database of nonribosomal peptides. Nucleic Acids Res 36:D326–D331

    Article  CAS  PubMed  Google Scholar 

  • Canutescu AA, Shelenkov AA, Dunbrack RL (2003) A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci Publ Protein Soc 12(9):2001–2014

    Article  CAS  Google Scholar 

  • Challis GL (2008) Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology (Reading, England) 154(6):1555–1569

    Article  CAS  Google Scholar 

  • Challis GL, Ravel J, Townsend C (2000) Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7(3):211–224

    Article  CAS  PubMed  Google Scholar 

  • Chan YA et al (2009) Biosynthesis of polyketide synthase extender units. Nat Prod Rep 26(1):90–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Jong A et al (2010) BAGEL2: mining for bacteriocins in genomic data. Nucleic Acids Res 38:W647–W651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Vries SJ, Van Dijk M, Bonvin AMJJ (2010) The HADDOCK web server for data-driven biomolecular docking. Nat Protoc 5(5):883–897

    Article  CAS  PubMed  Google Scholar 

  • Dunn BJ, Cane DE, Khosla C (2013) Mechanism and specificity of an acyltransferase domain from a modular polyketide synthase. Biochemistry 52(11):1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta S et al (2014) Structure of a modular polyketide synthase. Nature 510:512–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn RD et al (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222

    Article  CAS  PubMed  Google Scholar 

  • Foerstner KU et al (2008) A computational screen for type I polyketide synthases in metagenomics shotgun data. PLoS One 3(10):3515

    Article  CAS  Google Scholar 

  • Gokhale RS, Khosla C (2000) Role of linkers in communication between protein modules. Curr Opin Chem Biol 4(1):22–27

    Article  CAS  PubMed  Google Scholar 

  • Gokhale RS, Sankaranarayanan R, Mohanty D (2007) Versatility of polyketide synthases in generating metabolic diversity. Curr Opin Struct Biol 17(6):736–743

    Article  CAS  PubMed  Google Scholar 

  • Gurney R, Thomas CM (2011) Mupirocin: biosynthesis, special features and applications of an antibiotic from a gram-negative bacterium. Appl Microbiol Biotechnol 90(1):11–21

    Article  CAS  PubMed  Google Scholar 

  • Haft DH et al (2001) TIGRFAMs: a protein family resource for the functional identification of proteins. Nucleic Acids Res 29(1):41–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haines AS et al (2013) A conserved motif flags acyl carrier proteins for β-branching in polyketide synthesis. Nat Chem Biol 9(11):685–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hertweck C (2009) The biosynthetic logic of polyketide diversity. Angew Chem Int Ed Eng 48(26):4688–4716

    Article  CAS  Google Scholar 

  • Hunter S et al (2012) InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 40:D306–D312

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson CR et al (2000) Aspects of the biosynthesis of non-aromatic fungal polyketides by iterative polyketide synthases. Antonie Van Leeuwenhoek 78(3–4):287–295

    Article  CAS  PubMed  Google Scholar 

  • Jenke-Kodama H, Dittmann E (2009) Bioinformatic perspectives on NRPS/PKS megasynthases: advances and challenges. Nat Prod Rep 26(7):874–883

    Article  CAS  PubMed  Google Scholar 

  • Kapur S et al (2010) Molecular recognition between ketosynthase and acyl carrier protein domains of the 6-deoxyerythronolide B synthase. Proc Natl Acad Sci U S A 107(51):22066–22071

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapur S et al (2012) Reprogramming a module of the 6-deoxyerythronolide B synthase for iterative chain elongation. Proc Natl Acad Sci U S A 109(11):4110–4115

    Article  PubMed  PubMed Central  Google Scholar 

  • Keatinge-Clay A (2008) Crystal structure of the erythromycin polyketide synthase dehydratase. J Mol Biol 384(4):941–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keatinge-Clay AT, Stroud RM (2006) The structure of a ketoreductase determines the organization of the beta-carbon processing enzymes of modular polyketide synthases. Structure 14(4):737–748

    Article  CAS  PubMed  Google Scholar 

  • Khaldi N et al (2010) SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol 47(9):736–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khare D et al (2010) Conformational switch triggered by alpha-ketoglutarate in a halogenase of curacin A biosynthesis. Proc Natl Acad Sci U S A 107(32):14099–14104

    Article  PubMed  PubMed Central  Google Scholar 

  • Khosla C (2009) Structures and mechanisms of polyketide synthases. J Org Chem 74(17):6416–6420

    Article  CAS  PubMed  Google Scholar 

  • Khosla C et al (1999) Tolerance and specificity of polyketide synthases. Annu Rev Biochem 68:219–253

    Article  CAS  PubMed  Google Scholar 

  • Khosla C et al (2007) Structure and mechanism of the 6-deoxyerythronolide B synthase. Annu Rev Biochem 76:195–221

    Article  CAS  PubMed  Google Scholar 

  • Knox C et al (2011) DrugBank 3.0: a comprehensive resource for “omics” research on drugs. Nucleic Acids Res 39:D1035–D1041

    Article  CAS  Google Scholar 

  • Kufareva I et al (2007) PIER: protein interface recognition for structural proteomics. Proteins 67(2):400–417

    Article  CAS  PubMed  Google Scholar 

  • Kwon SJ et al (2012) Expanding nature’s small molecule diversity via in vitro biosynthetic pathway engineering. Curr Opin Chem Biol 16(1–2):186–195

    Article  CAS  PubMed  Google Scholar 

  • Lairson LL et al (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555

    Article  CAS  PubMed  Google Scholar 

  • Lee TV, Johnson RD, Arcus VL, Lott JS (2015) Prediction of the substrate for nonribosomal peptide synthetase (NRPS) adenylation domains by virtual screening. Proteins 83:2052–2066

    Article  CAS  PubMed  Google Scholar 

  • Letunic I, Doerks T, Bork P (2009) SMART 6: recent updates and new developments. Nucleic Acids Res 37:D229–D232

    Article  CAS  PubMed  Google Scholar 

  • Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40:D302–D305

    Article  CAS  PubMed  Google Scholar 

  • Lohman JR et al (2015) Structural and evolutionary relationships of “AT-less” type I polyketide synthase ketosynthases. PNAS 112(41):12693–12698

    Article  CAS  PubMed  Google Scholar 

  • Ma SM, Tang Y (2007) Biochemical characterization of the minimal polyketide synthase domains in the lovastatin nonaketide synthase LovB. FEBS J 274(11):2854–2864

    Article  CAS  PubMed  Google Scholar 

  • Maier T, Leibundgut M, Ban N (2008) The crystal structure of a mammalian fatty acid synthase. Science 321(5894):1315–1322

    Article  CAS  PubMed  Google Scholar 

  • Marchler-Bauer A et al (2011) CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229

    Article  CAS  PubMed  Google Scholar 

  • Medema MH et al (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39:W339–W346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minowa Y, Araki M, Kanehisa M (2007) Comprehensive analysis of distinctive polyketide and nonribosomal peptide structural motifs encoded in microbial genomes. J Mol Biol 368(5):1500–1517

    Article  CAS  PubMed  Google Scholar 

  • Musiol EW, Weber T (2012) Discrete acyltransferases involved in polyketide biosynthesis. Med Chem Commun 3:871–886

    Article  CAS  Google Scholar 

  • Nguyen T et al (2008) Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection. Nat Biotechnol 26(2):225–233

    Article  CAS  PubMed  Google Scholar 

  • Park SR et al (2010) Genetic engineering of macrolide biosynthesis: past advances, current state, and future prospects. Appl Microbiol Biotechnol 85(5):1227–1239

    Article  CAS  PubMed  Google Scholar 

  • Piel J (2010) Biosynthesis of polyketides by trans-AT polyketide synthases. Nat Prod Rep 27(7):996–1047

    Article  CAS  PubMed  Google Scholar 

  • Rausch C et al (2005) Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res 33(18):5799–5808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rausch C et al (2007) Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution. BMC Evol Biol 7:78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Röttig M et al (2011) NRPS predictor2 – a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res 39:W362–W367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6(8):493–505

    Article  CAS  PubMed  Google Scholar 

  • Stajich JE et al (2002) The Bioperl toolkit: Perl modules for the life sciences. Genome Res 12(10):1611–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starcevic A et al (2008) ClustScan: an integrated program package for the semi-automatic annotation of modular biosynthetic gene clusters and in silico prediction of novel chemical structures. Nucleic Acids Res 36(21):6882–6892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starcevic A et al (2012) Recombinatorial biosynthesis of polyketides. J Ind Microbiol Biotechnol 39(3):503–511

    Article  CAS  PubMed  Google Scholar 

  • Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18(4):380–416

    Article  CAS  PubMed  Google Scholar 

  • Tang Y et al (2006) The 2.7-Angstrom crystal structure of a 194-kDa homodimeric fragment of the 6-deoxyerythronolide B synthase. Proc Natl Acad Sci U S A 103(30):11124–11129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Y et al (2007) Structural and mechanistic analysis of protein interactions in module 3 of the 6-deoxyerythronolide B synthase. Chem Biol 14(8):931–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas CM et al (2010) Resistance to and synthesis of the antibiotic mupirocin. Nat Rev Microbiol 8(4):281–289

    Article  CAS  PubMed  Google Scholar 

  • Tsai SCS, Ames BD (2009) Structural enzymology of polyketide synthases. Methods Enzymol 459(09):17–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber T, Kim HU (2016) The secondary metabolite bioinformatics portal: computation tools to facilitate synthetic biology of secondary metabolite production. Synth Syst Biotechnol 1:69–79

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber T et al (2009) CLUSEAN: a computer-based framework for the automated analysis of bacterial secondary metabolite biosynthetic gene clusters. J Biotechnol 140(1–2):13–17

    Article  CAS  PubMed  Google Scholar 

  • Weber T et al (2015) antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43:W237–W243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weissman KJ (2006) The structural basis for docking in modular polyketide biosynthesis. Chembiochem Eur J Chem Biol 7(3):485–494

    Article  CAS  Google Scholar 

  • Weissman KJ, Leadlay PF (2005) Combinatorial biosynthesis of reduced polyketides. Nat Rev Microbiol 3(12):925–936

    Article  CAS  PubMed  Google Scholar 

  • Weissman KJ, Müller R (2008) Protein-protein interactions in multienzyme megasynthetases. Chembiochem Eur J Chem Biol 9(6):826–848

    Article  CAS  Google Scholar 

  • Wilkins A et al (2012) Evolutionary trace for prediction and redesign of protein functional sites. Methods Mol Biol 819:29–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J et al (2007) Mupirocin H, a novel metabolite resulting from mutation of the HMG-CoA synthase analogue, mupH in Pseudomonas fluorescens. Chem Commun 8(20):2040–2042

    Article  CAS  Google Scholar 

  • Yadav G, Gokhale RS, Mohanty D (2003) Computational approach for prediction of domain organization and substrate specificity of modular polyketide synthases. J Mol Biol 328(2):335–363

    Article  CAS  PubMed  Google Scholar 

  • Yadav G, Gokhale RS, Mohanty D (2009) Towards prediction of metabolic products of polyketide synthases: an in silico analysis. PLoS Comput Biol 5(4):1000351

    Article  CAS  Google Scholar 

Download references

Acknowledgements

RF thanks the Darwin Trust of Edinburgh for financial support and Sam Higginbottom University of Agriculture, Technology and Sciences, India, for study leave and financial support. PJW and CMT thank the BBSRC/EPSRC for support via grant BB/F014570/1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rohit Farmer or Peter J. Winn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Farmer, R., Thomas, C.M., Winn, P.J. (2018). Modelling Polyketide Synthases and Similar Macromolecular Complexes. In: Wadhwa, G., Shanmughavel, P., Singh, A., Bellare, J. (eds) Current trends in Bioinformatics: An Insight. Springer, Singapore. https://doi.org/10.1007/978-981-10-7483-7_7

Download citation

Publish with us

Policies and ethics