Skip to main content

Epigenome: The Guide to Genomic Expression

  • Chapter
  • First Online:
Book cover Current trends in Bioinformatics: An Insight
  • 1246 Accesses

Abstract

Epigenetic research endeavours to empathize traditional gene regulation not under direct encoding of DNA sequence. Histone modifications, DNA methylation and binding of nonhistone proteins are well-identified mechanisms of epigenetic control of cellular phenotype by gene expression regulations. Environmental factors cause, wholly or partly, different human diseases. Environmental chemicals have long been accepted to cause many diseases through alterations in the genome or genetic effects. Epigenomics (i.e. beyond genomics) encompasses amalgamation of customary genomics with other branches of science like mathematics, computer science, biochemistry, chemistry, proteomics and molecular biology. It looks for the comprehensive analysis of heritable phenotypic changes, alterations in gene function/expression that are not independent of gene sequence. The epigenomic science offers and beckons novel opportunities to help and elevate our understanding of nuclear organization, regulation of transcription, developmental phenomena and diseases at molecular level. This article presents a comprehensive report about the existing computational strategies and approaches for studying the different factors of epigenetics, with special focus on important computational tools and biological databases. In addition, a brief introduction into epigenetics have also been outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilera O et al (2010) Epigenetics and environment: a complex relationship. J Appl Physiol 109(1):243–251

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker DJ, Osmond C (1988) Low birth weight and hypertension. BMJ Br Med J 297(6641):134

    Article  CAS  Google Scholar 

  • Bhasin M et al (2005) Prediction of methylated CpG in DNA sequences using a support vector machine. FEBS Lett 579(20):4302–4308

    Article  CAS  PubMed  Google Scholar 

  • Bock C, Lengauer T (2007) Computational epigenetics. Bioinformatics 24(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Brookes E, Shi Y (2014) Diverse epigenetic mechanisms of human disease. Ann Rev Gen 48:237–268

    Article  CAS  Google Scholar 

  • Campagna-Slater V et al (2011) Structural chemistry of the histone methyltransferases cofactor binding site. J Chem Inf Model 51(3):612–623

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Zhang L (2011) Epigenetic mechanisms in developmental programming of adult disease. Drug Discov Today 16(23):1007–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi SW, Friso S (2010) Epigenetics: a new bridge between nutrition and health. Am Soc Nut Adv Nutr 1:8–16

    Article  CAS  Google Scholar 

  • Chuang JC, Jones PA (2007) Epigenetics and microRNAs. Pediatr Res 61(5):24R–29R

    Article  CAS  PubMed  Google Scholar 

  • Collas P (2010) The current state of chromatin immunoprecipitation. Mol Biotechnol 45(1):87–100

    Article  CAS  PubMed  Google Scholar 

  • Collins FS et al (2003) A vision for the future of genomics research. Nature 422(6934):835–847

    Article  CAS  PubMed  Google Scholar 

  • de Pretis S, Pelizzola M (2014) Computational and experimental methods to decipher the epigenetic code. Front Genet 5:335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodge JE et al (2002) de novo methylation of MMLV provirus in embryonic stem cells: CpG versus non- CpG methylation. Gene 289(1–2):41–48

    Article  CAS  PubMed  Google Scholar 

  • Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R, Herb B, Ladd-Acosta C, Rho J, Loewer S, Miller J (2009) Differential methylation of tissue-and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 41(12):1350–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eastvaran HP et al (2004) Replication- independent chromatin loading of Dnmt1 during G2 and M phases. EMBO Rep 5(12):118

    Google Scholar 

  • Espada J, Esteller M (2007) Epigenetic control of nuclear architecture. Cell Mol Life Sci 64(4):449–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fazzari MJ, Greally JM (2004) Epigenomics: beyond CpG islands. Nature 5(6):446–455

    CAS  Google Scholar 

  • Feinberg AP (2010) Epigenomics reveals a functional genome anatomy and a new approach to common disease. Nat Biotechnol 28(10):1049–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraga MF et al (2005a) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37(4):391–400

    Article  CAS  PubMed  Google Scholar 

  • Fraga MF et al (2005b) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 102(30):10604–10609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frigola J et al (2006) Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. Nat Genet 38(5):540–549

    Article  CAS  PubMed  Google Scholar 

  • Gitan RS et al (2002) Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res 12(1):158–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalgo M, Jones P (1997) Mutagenic and epigenetic effects of DNA methylation. Mutat Res 386(2):107–118

    Article  CAS  PubMed  Google Scholar 

  • Hales CN, Barker DJ (2001) The thrifty phenotype hypothesis. Br Med Bull 60(1):5–20

    Article  CAS  PubMed  Google Scholar 

  • Halkidou K et al (2004) Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate 59(2):177–189

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Wu JC (2013) Epigenetic modulations of induced pluripotent stem cells: novel therapies and disease models. Drug Discov Today Dis Model 9(4):e153–e160

    Article  Google Scholar 

  • Iizuka M, Smith MM (2003) Functional consequences of histone modifications. Curr Opin Genet Dev 13(2):154–160

    Article  CAS  PubMed  Google Scholar 

  • Irizarry RA et al (2009) The human colon cancer methylome shows similar hypo-and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41(2):178–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Gen 13:484–492

    Article  CAS  Google Scholar 

  • Jones PA, Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 293(5532):1068–1070

    Article  CAS  PubMed  Google Scholar 

  • Kaneda M et al (2004) Essential role for de novo methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429(6994):900–903

    Article  CAS  PubMed  Google Scholar 

  • Kanherkar RR et al (2014) Cellular reprogramming for understanding and treating human disease. Front Cell Dev Biol 2:67

    PubMed  PubMed Central  Google Scholar 

  • Kawamura A et al (2010) Development of homogeneous luminescence assays for histone demethylase catalysis and binding. Anal Biochem 404(1):86–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kent WJ (2002) BLAT – the BLAST-like alignment tool. Genome Res 12:656–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubota T et al (2012) Epigenetic understanding of gene-environment interactions in psychiatric disorders: a new concept of clinical genetics. Clin Epigenetics 4(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laird PW (2003) The power and the promise of DNA methylation markers. Nat Rev Cancer 3(4):253–266

    Article  CAS  PubMed  Google Scholar 

  • Lister R et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271):315–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchevsky AM et al (2004) Classification of individual lung cancer cell lines based on DNA methylation markers: use of linear discriminant analysis and artificial neural networks. J Mol Des 6(1):28–36

    CAS  Google Scholar 

  • Marmorstein R (2001) Structure and function of histone acetyltransferases. Cell Mol Life Sci 58:693–703

    Article  CAS  PubMed  Google Scholar 

  • Martinez SR et al (2015) Epigenetic mechanisms in heart development and disease. Drug Discov Today 20(7):799–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meissner A et al (2005) Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 33(18):5868–5877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okano M et al (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 19(3):219–220

    Article  CAS  PubMed  Google Scholar 

  • Okano M et al (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):245–257

    Article  Google Scholar 

  • Park LK, Friso S, Choi SW (2012) Nutritional influences on epigenetics and age-related disease. Proc Nutr Soc 71(1):75–83

    Article  CAS  PubMed  Google Scholar 

  • Petrossian T, Clarke S (2009) Bioinformatics identification of novel methyltransferases. Epigenomics 1(1):163–175

    Article  CAS  PubMed  Google Scholar 

  • Pfister S et al (2007) Array-based profiling of reference-independent methylation status (aPRIMES) identifies frequent promoter methylation and consecutive downregulation of ZIC2 in pediatric medulloblastoma. Nucleic Acids Res 35(7):e51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piplani S et al (2016) Homology modelling and molecular docking studies of human placental cadherin protein for its role in teratogenic effects of anti-epileptic drugs. Comp Biol Chem 60:1–8

    Article  CAS  Google Scholar 

  • Pradhan S, Esteve PO (2003) Mammalian DNA (cytosine-5) methyltransferases and their expression. Clin Immunol 109(1):6–16

    Article  CAS  PubMed  Google Scholar 

  • Pullirsch D et al (2010) The trithorax group protein Ash 2l and Saf – A are recruited to inactive X- chromosome at the onset of stable X inactivation. Development 137(6):935–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putiri EL, Robertson KD (2011) Epigenetic mechanisms and genome stability. Clin Epigenetics 2(2):299–314

    Article  PubMed  Google Scholar 

  • Rivera CM, Ren B (2013) Mapping human epigenomes. Cell 155(1):39–55

    Article  CAS  PubMed  Google Scholar 

  • Roberts RJ et al (2003) A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res 31(7):1805–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson MD, Pelizzola M (2015) Computational epigenomics: challenges and opportunities. Front Genet 6(88):1–3

    CAS  Google Scholar 

  • Robinson MD et al. (2014) Statistical methods for detecting differentially methylated loci and regions. Front Genet. 5:324: eCollection-2014

    Google Scholar 

  • Sato F et al (2011) MicroRNAs and epigenetics. FEBS J 278:1598–1609

    Article  CAS  PubMed  Google Scholar 

  • Schumacher A et al (2006) Microarray based DNA methylation profiling: technology and application. Nucleic Acids Res 34(2):528–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serman A et al (2006) DNA methylation as a regulatory mechanism for gene expression in mammals. Coll Antropol 30(3):665–671

    PubMed  CAS  Google Scholar 

  • Song J et al (2005) Increased expression of histone deacetylase 2 is found in human gastric cancer. APMIS 113(4):264–268

    Article  CAS  PubMed  Google Scholar 

  • Tammen SA et al (2013) Epigenetics: the link between nature and nurture. Mol Asp Med 34(4):753–764

    Article  CAS  Google Scholar 

  • Thompson JD et al (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virani S et al (2012) Cancer epigenetics: a brief review. ILAR J 53(3–4):359–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H et al (2010) Redefining CpG islands using hidden Markov Models. Biostatistics 11(3):499–514

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan PS et al (2004) Methylation-specific oligonucleotide microarray. Methods Mol Biol 287:251–260

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Wadhwa, G. (2018). Epigenome: The Guide to Genomic Expression. In: Wadhwa, G., Shanmughavel, P., Singh, A., Bellare, J. (eds) Current trends in Bioinformatics: An Insight. Springer, Singapore. https://doi.org/10.1007/978-981-10-7483-7_5

Download citation

Publish with us

Policies and ethics