Skip to main content

Three Dimensional Structures of Carbohydrates and Glycoinformatics: An Overview

  • Chapter
  • First Online:
Current trends in Bioinformatics: An Insight

Abstract

Carbohydrates are regarded as the interesting molecules of nature because of their structural diversity and functional characteristics. The nature of existence of carbohydrates in varied forms and conformations is crucial in understanding their functional features in living systems. The dynamical behavior of carbohydrates in free or bound state with other biological molecules influences their functional role in biological systems. In N- and O-glycosylation, sequence, structure, and conformation of carbohydrates play a vital role. Hence, necessity arises for the complete understanding of the three-dimensional structures of carbohydrates. One of the theoretical ways of studying the structural and conformational aspect of carbohydrates is by molecular dynamics simulation. Not only the structure and conformation but also the interaction of carbohydrates with its conjugated forms can be investigated. The resources for carbohydrates in the form of databases available are discussed. Sialic acid-containing oligosaccharides which have an important role in molecular recognition phenomena are attributed to their sequence, structure, and conformational diversity. A three-dimensional structural database for sialic acid-containing carbohydrates (3DSDSCAR) developed based on molecular dynamics simulation results is discussed in detail. Glycoinformatics, knowledge about carbohydrates or glycans, is still a field of informatics to be explored more.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afferni C et al (1999) Role of carbohydrate moieties in IgE binding to allergenic components of Cupressus arizonica pollen extract. Clin Exp Allergy 29(8):1087–1094

    Article  PubMed  CAS  Google Scholar 

  • Alder B, Wainwright T (1957) Phase transition for a hard sphere system. J Chem Phys 27(5):1208

    Article  CAS  Google Scholar 

  • Atkins E et al (1974) X-ray fibre diffraction of cartilage proteoglycan aggregates containing hyaluronic acid. Biochem J 141(3):919–921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bause E, Legler G (1981) The role of the hydroxy amino acid in the triplet sequence Asn-Xaa-Thr (Ser) for the N-glycosylation step during glycoprotein biosynthesis. Biochem J 195(3):639–644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berteau O, Stenutz R (2004) Web resources for the carbohydrate chemist. Carbohydr Res 339(5):929–936

    Article  PubMed  CAS  Google Scholar 

  • Biswas M, Rao V (1980) Conformational analysis of the milk oligosaccharides. Biopolymers 19(8):1555–1566

    Article  PubMed  CAS  Google Scholar 

  • Biswas M, Rao V (1982) Conformational studies on the ABH and Lewis blood group oligosaccharides. Carbohydr Polym 2(3):205–222

    Article  CAS  Google Scholar 

  • Bode L (2006) Recent advances on structure, metabolism, and function of human milk oligosaccharides. J Nutr 136(8):2127–2130

    Article  PubMed  CAS  Google Scholar 

  • Bohne A et al (1998) W3-SWEET: carbohydrate modeling by internet. Mol Model Ann 4(1):33–43

    Article  CAS  Google Scholar 

  • Bourne Y, Cambillau C (1993) The role of structural water molecules in protein-saccharide complexes. Water and biological macromolecules. Springer, pp 321–337

    Chapter  Google Scholar 

  • Brady J (1986) Molecular dynamics simulations of. alpha.-D-glucose. J Am Chem Soc 108(26):8153–8160

    Article  CAS  Google Scholar 

  • Brady JW (1991) Theoretical studies of oligosaccharide structure and conformational dynamics. Curr Opin Struct Biol 1(5):711–715

    Article  CAS  Google Scholar 

  • Brocca P et al (2000) Modeling ganglioside headgroups by conformational analysis and molecular dynamics. Glycoconj J 17(5):283–299

    Article  PubMed  CAS  Google Scholar 

  • Brown EB et al (1975) Cell-surface carbohydrates and their interactions: I. NMR of N-acetyl neuraminic acid. Biochimic Biophys Acta (BBA)-Gen Subj 399(1):124–130

    Article  CAS  Google Scholar 

  • Bundle DR, Young NM (1992) Carbohydrate-protein interactions in antibodies and lectins. Curr Opin Struct Biol 2(5):666–673

    Article  CAS  Google Scholar 

  • Bush CA (1992) Experimental determination of the three-dimensional structure of oligosaccharides. Curr Opin Struct Biol 2(5):655–660

    Article  CAS  Google Scholar 

  • Cael JJ et al (1976) Polarized infrared spectra of crystalline glycosaminoglycans. Carbohydr Res 50(2):169–179

    Article  PubMed  CAS  Google Scholar 

  • Cagas P, Bush CA (1990) Determination of the conformation of Lewis blood group oligosaccharides by simulation of two-dimensional nuclear overhauser data. Biopolymers 30(11–12):1123–1138

    Article  PubMed  CAS  Google Scholar 

  • Carver JP (1991) Experimental structure determination of oligosaccharides. Curr Opin Struct Biol 1(5):716–720

    Article  CAS  Google Scholar 

  • Christlet THT, Veluraja K (2001) Database analysis of O-glycosylation sites in proteins. Biophys J 80(2):952–960

    Article  CAS  Google Scholar 

  • Christlet THT et al (1999) A database analysis of potential glycosylating Asn-X-Ser/Thr consensus sequences. Acta Crystallogr D Biol Crystallogr 55(8):1414–1420

    Article  PubMed  CAS  Google Scholar 

  • Crocker PR, Feizi T (1996) Carbohydrate recognition systems: functional triads in cell—cell interactions. Curr Opin Struct Biol 6(5):679–691

    Article  PubMed  CAS  Google Scholar 

  • Cumming DA, Carver JP (1987) Virtual and solution conformations of oligosaccharides. Biochemistry 26(21):6664–6676

    Article  PubMed  CAS  Google Scholar 

  • Czarniecki MF, Thornton ER (1977) Carbon-13 nuclear magnetic resonance spin-lattice relaxation in the N-acylneuraminic acids. Probes for internal dynamics and conformational analysis. J Am Chem Soc 99(25):8273–8279

    Article  CAS  Google Scholar 

  • Doubet S et al (1989) The complex carbohydrate structure database. Trends Biochem Sci 14(12):475–477

    Article  PubMed  CAS  Google Scholar 

  • Gagneux P, Varki A (1999) Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology 9(8):747–755

    Article  PubMed  CAS  Google Scholar 

  • Gooley AA et al (1991) Glycosylation sites identified by detection of glycosylated amino acids released from Edman degradation: the identification of Xaa-Pro-Xaa-Xaa as a motif for Thr-O-glycosylation. Biochem Biophys Res Commun 178(3):1194–1201

    Article  PubMed  CAS  Google Scholar 

  • Hansen JE et al (1995) Prediction of O-glycosylation of mammalian proteins: specificity patterns of UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase. Biochem J 308(3):801–813

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hashimoto K et al (2006) KEGG as a glycome informatics resource. Glycobiology 16(5):63R–70R

    Article  PubMed  CAS  Google Scholar 

  • Hughes RC et al (1988) Substrate recognition by UDP-N-acetyl-α-d-galactosamine: polypeptide N-acetyl-α-d-galactosaminyltransferase. Effects of chain length and disulphide bonding of synthetic peptide substrates. Carbohydr Res 178(1):259–269

    Article  PubMed  CAS  Google Scholar 

  • Hunt LT, Dayhoff MO (1970) The occurrence in proteins of the tripeptides Asn-X-Ser and Asn-X-Thr and of bound carbohydrate. Biochem Biophys Res Commun 39(4):757–765

    Article  PubMed  CAS  Google Scholar 

  • Imberty A (1997) Oligosaccharide structures: theory versus experiment. Curr Opin Struct Biol 7(5):617–623

    Article  PubMed  CAS  Google Scholar 

  • Imberty A, Pérez S (1995) Stereochemistry of the N-glycosylation sites in glycoproteins. Protein Eng 8(7):699–709

    Article  PubMed  CAS  Google Scholar 

  • Imberty A, Pérez S (2000) Structure, conformation, and dynamics of bioactive oligosaccharides: theoretical approaches and experimental validations. Chem Rev 100(12):4567–4588

    Article  PubMed  CAS  Google Scholar 

  • Imperiali B (1997) Protein glycosylation: the clash of the titans. Acc Chem Res 30(11):452–459

    Article  CAS  Google Scholar 

  • Jarrell HC et al (1987) Determination of conformational properties of glycolipid head groups by deuterium NMR of oriented multibilayers. Biochemistry 26(7):1805–1811

    Article  PubMed  CAS  Google Scholar 

  • Karlsson KA (1995) Microbial recognition of target-cell glycoconjugates. Curr Opin Struct Biol 5(5):622–635

    Article  PubMed  CAS  Google Scholar 

  • Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Mol Biol 9(9):646–652

    Article  CAS  Google Scholar 

  • Kelemen M, Rogers H (1971) Three-dimensional molecular models of bacterial cell wall mucopeptides (peptidoglycans). Proc Natl Acad Sci 68(5):992–996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klaić B, Domenick RL (1990) 1 Hn. mr studies of a natural immunoadjuvant peptidoglycan monomer: proposed structure in solution in methyl sulfoxide. Carbohydr Res 196:19–27

    Article  PubMed  Google Scholar 

  • Lemieux R, Koto S (1974) The conformational properties of glycosidic linkages. Tetrahedron 30(13):1933–1944

    Article  CAS  Google Scholar 

  • Lis H, Sharon N (1993) Protein glycosylation. Eur J Biochem 218(1):1–27

    Article  PubMed  CAS  Google Scholar 

  • Lis H, Sharon N (1998) Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem Rev 98(2):637–674

    Article  PubMed  CAS  Google Scholar 

  • Live DH et al (1999) Probing cell-surface architecture through synthesis: an NMR-determined structural motif for tumor-associated mucins. Proc Natl Acad Sci 96(7):3489–3493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lonngren J (1989) Carbohydrates and the pharmaceutical industry. Pure Appl Chem 61(7):1313–1314

    Article  Google Scholar 

  • Lütteke T et al (2004) Data mining the protein data bank: automatic detection and assignment of carbohydrate structures. Carbohydr Res 339(5):1015–1020

    Article  PubMed  CAS  Google Scholar 

  • Lütteke T et al (2006) GLYCOSCIENCES. de: an internet portal to support glycomics and glycobiology research. Glycobiology 16(5):71R–81R

    Article  PubMed  CAS  Google Scholar 

  • Marchal I et al (2003) Bioinformatics in glycobiology. Biochimie 85(1):75–81

    Article  PubMed  CAS  Google Scholar 

  • McCammon JA et al (1977) Dynamics of folded proteins. Nature 267(5612):585–590

    Article  PubMed  CAS  Google Scholar 

  • Moir A, Smith DA (1990) The genetics of bacterial spore germination. Ann Rev Microbiol 44(1):531–553

    Article  CAS  Google Scholar 

  • Moskalewski S, Jankowska-Steifer E (2011) Hydrostatic and boundary lubrication of joints – nature of boundary lubricant. Ortop Traumatol Rehabil 14(1):13–21

    Article  Google Scholar 

  • Mulloy B, Forster MJ (2000) Conformation and dynamics of heparin and heparan sulfate. Glycobiology 10(11):1147–1156

    Article  PubMed  CAS  Google Scholar 

  • Muramatsu T (2000) Protein-bound carbohydrates on cell-surface as targets of recognition: an odyssey in understanding them. Glycoconj J 17(7–9):577–595

    Article  PubMed  CAS  Google Scholar 

  • O’Connor SE, Imperiali B (1996) Modulation of protein structure and function by asparagine-linked glycosylation. Chem Biol 3(10):803–812

    Article  PubMed  Google Scholar 

  • O'Connell B et al (1991) The influence of flanking sequences on O-glycosylation. Biochem Biophys Res Commun 180(2):1024–1030

    Article  PubMed  CAS  Google Scholar 

  • Olofsson S, Bergström T (2005) Glycoconjugate glycans as viral receptors. Ann Med 37(3):154–172

    Article  PubMed  CAS  Google Scholar 

  • Pascher I, Sundell S (1977) Molecular arrangements in sphingolipids. The crystal structure of cerebroside. Chem Phys Lipids 20(3):175–191

    Article  CAS  Google Scholar 

  • Paulson JC (1989) Glycoproteins: what are the sugar chains for? Trends Biochem Sci 14(7):272–276

    Article  PubMed  CAS  Google Scholar 

  • Pérez S, Marchessault RH (1978) The exo-anomeric effect: experimental evidence from crystal structures. Carbohydr Res 65(1):114–120

    Article  Google Scholar 

  • Pérez S, Mulloy B (2005) Prospects for glycoinformatics. Curr Opin Struct Biol 15(5):517–524

    Article  PubMed  CAS  Google Scholar 

  • Peters T, Pinto BM (1996) Structure and dynamics of oligosaccharides: NMR and modeling studies. Curr Opin Struct Biol 6(5):710–720

    Article  PubMed  CAS  Google Scholar 

  • Petrescu AJ et al (1999) A statistical analysis of N-and O-glycan linkage conformations from crystallographic data. Glycobiology 9(4):343–352

    Article  PubMed  CAS  Google Scholar 

  • Poppe L et al (1992) The solution conformation of sialyl-α (2→ 6)-lactose studied by modern NMR techniques and Monte Carlo simulations. J Biomol NMR 2(2):109–136

    Article  PubMed  CAS  Google Scholar 

  • Poveda A, Jiménez-Barbero J (1998) NMR studies of carbohydrate–protein interactions in solution. Chem Soc Rev 27(2):133–144

    Article  CAS  Google Scholar 

  • Priyadarzini TR et al (2012) Molecular dynamics simulation and quantum mechanical calculations on α-D-N-acetylneuraminic acid. Carbohydr Res 351:93–97

    Article  PubMed  CAS  Google Scholar 

  • Quiocho FA (1989) Protein-carbohydrate interactions: basic molecular features. Pure Appl Chem 61(7):1293–1306

    Article  CAS  Google Scholar 

  • Rall S et al (1982) Human apolipoprotein E. The complete amino acid sequence. J Biol Chem 257(8):4171–4178

    PubMed  CAS  Google Scholar 

  • Ranzinger R et al (2008) GlycomeDB–integration of open-access carbohydrate structure databases. BMC Bioinforma 9(1):1

    Article  CAS  Google Scholar 

  • Rao VR (1998) Conformation of carbohydrates. CRC Press, Boca Raton

    Google Scholar 

  • Rao V, Biswas M (1981) Conformations and interactions of blood-group oligosaccharides. Biochem Soc Trans 9(6):508–510

    Article  PubMed  CAS  Google Scholar 

  • Revelle BM et al (1996) Structure-function analysis of P-selectin-Sialyl Lewis binding interactions mutagenic alteration of ligand binding specificity. J Biol Chem 271(8):4289–4297

    Article  PubMed  CAS  Google Scholar 

  • Rice KG et al (1993) Experimental determination of oligosaccharide three-dimensional structure. Curr Opin Struct Biol 3(5):669–674

    Article  CAS  Google Scholar 

  • Roy R (1996) Syntheses and some applications of chemically defined multivalent glycoconjugates. Curr Opin Struct Biol 6(5):692–702

    Article  PubMed  CAS  Google Scholar 

  • Sawada T et al (2006) Conformational study of α-N-acetyl-D-neuraminic acid by density functional theory. J Carbohydr Chem 25(5):387–405

    Article  CAS  Google Scholar 

  • Schauer R, Kamerling JP (1995) Chemistry, biochemistry and biology of sialic acids. New Compr Biochem 29:243–402

    Article  Google Scholar 

  • Sharmila DJS, Veluraja K (2004a) Disialogangliosides and their interaction with cholera toxin—investigation by molecular modeling, molecular mechanics and molecular dynamics. J Biomol Struct Dyn 22(3):299–313

    Article  CAS  Google Scholar 

  • Sharmila DJS, Veluraja K (2004b) Monosialogangliosides and their interaction with cholera toxin—investigation by molecular modeling and molecular mechanics. J Biomol Struct Dyn 21(4):591–613

    Article  PubMed  CAS  Google Scholar 

  • Sharmila DJS, Veluraja K (2006) Conformations of higher gangliosides and their binding with cholera toxin-investigation by molecular modeling, molecular mechanics, and molecular dynamics. J Biomol Struct Dyn 23(6):641–656

    Article  PubMed  CAS  Google Scholar 

  • Simanek EE et al (1998) Selectin-carbohydrate interactions: from natural ligands to designed mimics. Chem Rev 98(2):833–862

    Article  PubMed  CAS  Google Scholar 

  • Suresh MX, Veluraja K (2003) Conformations of terminal sialyloligosaccharide fragments—a molecular dynamics study. J Theor Biol 222(3):389–402

    Article  PubMed  CAS  Google Scholar 

  • Tipper DJ (1970) Structure and function of peptidoglycans. Int J Syst Evol Microbiol 20(4):361–377

    CAS  Google Scholar 

  • Toone EJ (1994) Structure and energetics of protein-carbohydrate complexes. Curr Opin Struct Biol 4(5):719–728

    Article  CAS  Google Scholar 

  • Van Halbeek H (1994) NMR developments in structural studies of carbohydrates and their complexes. Curr Opin Struct Biol 4(5):697–709

    Article  Google Scholar 

  • van Kuik JA et al (1992) A 1H NMR database computer program for the analysis of the primary structure of complex carbohydrates. Carbohydr Res 235:53–68

    Article  PubMed  Google Scholar 

  • Varki A (1998) Factors controlling the glycosylation potential of the Golgi apparatus. Trends Cell Biol 8(1):34–40

    Article  PubMed  CAS  Google Scholar 

  • Varki A, Freeze HH (2009) Glycans in acquired human diseases (Chapter 43), Essentials of Glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Vasudevan SV, Balaji PV (2001) Dynamics of ganglioside headgroup in lipid environment: molecular dynamics simulations of GM1 embedded in dodecylphosphocholine micelle. J Phys Chem B 105(29):7033–7041

    Article  CAS  Google Scholar 

  • Vasudevan SV, Balaji PV (2002) Comparative analysis of ganglioside conformations by MD simulations: implications for specific recognition by proteins. J Mol Struct THEOCHEM 583(1):215–232

    Article  CAS  Google Scholar 

  • Veluraja K, Margulis CJ (2005) Conformational dynamics of sialyl lewisx in aqueous solution and its interaction with selectine. A study by molecular dynamics. J Biomol Struct Dyn 23(1):101–111

    Article  PubMed  CAS  Google Scholar 

  • Veluraja K, Rao V (1980) Theoretical studies on the conformation of β-DN-acetyl neuraminic acid (sialic acid). Biochim Biophys Acta (BBA)-Gen Subj 630(3):442–446

    Article  CAS  Google Scholar 

  • Veluraja K, Rao V (1983) Theoretical studies on the conformation of monosialogangliosides and disialogangliosides. Carbohydr Polym 3(3):175–192

    Article  CAS  Google Scholar 

  • Veluraja K, Rao V (1984a) Studies on the conformations of sialyloligosaccharides and implications. J Biosci 6(5):625–634

    Article  CAS  Google Scholar 

  • Veluraja K, Rao V (1984b) Theoretical studies on the conformations of higher gangliosides. Carbohydr Polym 4(5):357–375

    Article  CAS  Google Scholar 

  • Veluraja K, Seethalakshmi AN (2008) Dynamics of sialyl Lewis a in aqueous solution and prediction of the structure of the sialyl Lewis a–selectinE complex. J Theor Biol 252(1):15–23

    Article  PubMed  CAS  Google Scholar 

  • Veluraja K et al (2001) Molecular modeling of sialyloligosaccharide fragments into the active site of influenza virus N9 neuraminidase. J Biomol Struct Dyn 19(1):33–45

    Article  PubMed  CAS  Google Scholar 

  • Veluraja K et al (2010) 3DSDSCAR-a three dimensional structural database for sialic acid-containing carbohydrates through molecular dynamics simulation. Carbohydr Res 345(14):2030–2037

    Article  PubMed  CAS  Google Scholar 

  • von der Lieth CW et al (2002) Molecular dynamics simulations of glycoclusters and glycodendrimers. Rev Mol Biotechnol 90(3):311–337

    Article  Google Scholar 

  • von der Lieth CW et al. (2009) Bioinformatics for glycobiology and glycomics: an introduction. Wiley Online Library

    Google Scholar 

  • Vyas N et al (1991) Comparison of the periplasmic receptors for L-arabinose, D-glucose/D-galactose, and D-ribose. Structural and functional similarity. J Biol Chem 266(8):5226–5237

    PubMed  CAS  Google Scholar 

  • Werz DB, Seeberger PH (2005) Carbohydrates as the next frontier in pharmaceutical research. Chem Eur J 11(11):3194–3206

    Article  PubMed  CAS  Google Scholar 

  • Wilson J, Itzstein M (2003) Recent strategies in the search for new anti-influenza therapies. Curr Drug Targets 4(5):389–408

    Article  PubMed  CAS  Google Scholar 

  • Wilson I et al (1991) Amino acid distributions around O-linked glycosylation sites. Biochem J 275(2):529–534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woods RJ (1995) Three-dimensional structures of oligosaccharides. Curr Opin Struct Biol 5(5):591–598

    Article  PubMed  CAS  Google Scholar 

  • Woods RJ (1998) Computational carbohydrate chemistry: what theoretical methods can tell us. Glycoconj J 15(3):209–216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • WoodsGroup (2005–2010) GLYCAM Web, from http://www.glycam.com

  • Wormald MR et al (2002) Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography, and molecular modelling. Chem Rev 102(2):371–386

    Article  PubMed  CAS  Google Scholar 

  • Wu WG et al (1999) Structural study on O-glycopeptides: glycosylation-induced conformational changes of O-GlcNAc, O-LacNAc, O-sialyl-LacNAc, and O-sialyl-lewis-X peptides of the mucin domain of MAdCAM-1. J Am Chem Soc 121(11):2409–2417

    Article  CAS  Google Scholar 

  • Wyss DF et al (1995) Conformation and function of the N-linked glycan in the adhesion domain of human CD2. Science 269(5228):1273

    Article  PubMed  CAS  Google Scholar 

  • Yan ZY, Bush CA (1990) Molecular dynamics simulations and the conformational mobility of blood group oligosaccharides. Biopolymers 29(4–5):799–811

    Article  PubMed  CAS  Google Scholar 

  • Yoshida A et al (1997) Discovery of the shortest sequence motif for high level mucin-type O-glycosylation. J Biol Chem 272(27):16884–16888

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Veluraja acknowledges the agencies DST, DBT, and DBT-India-AIST-Japan for funding his various research projects. JFA Selvin acknowledges DST for JRF, DBT for Research Assistantship, and CSIR for SRF. Jasmine acknowledges UGC-BSR for JRF and SRF. All the authors acknowledge the use of Bioinformatics Infrastructure Facility housed at Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Veluraja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Veluraja, K., Fermin Angelo Selvin, J., Jasmine, A., Hema Thanka Christlet, T. (2018). Three Dimensional Structures of Carbohydrates and Glycoinformatics: An Overview. In: Wadhwa, G., Shanmughavel, P., Singh, A., Bellare, J. (eds) Current trends in Bioinformatics: An Insight. Springer, Singapore. https://doi.org/10.1007/978-981-10-7483-7_4

Download citation

Publish with us

Policies and ethics