Skip to main content

Abiotic Stress Response in Plants:A Cis-Regulatory Perspective

  • Chapter
  • First Online:

Abstract

The growth and development of plant are adversely affected due to various abiotic stresses such as cold, heat, drought, salinity, heavy metal, hypoxia, etc. Plant adaptation to the stress conditions is brought out by changes in its physiological parameters which have underlying molecular basis. Multiple signalling pathways are activated in response to particular stress which are often complex and work through a network of trans- and cis-regulatory factors. In the following chapter, we summarize the current understanding of cis-regulatory factors, viz. promoters and transcription factor binding motifs, which are responsible for relaying signals during anabiotic signalling cascade ultimately preventing and mitigating the ill effect of climatic conditions on plant growth and survival.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signalling. Plant Cell 15:63–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zang X, Zhu JK (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281(49):37636–37645

    Article  CAS  PubMed  Google Scholar 

  • Amin J, Ananthan J, Voellmy R (1988) Key features of heat shock regulatory elements. Mol Cell Biol 8:3761–3769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ammara M, Nadia I, Hira M, Rubab ZN, Asia K, Aftab B (2016) Cloning and expression analysis of alcohol dehydrogenase (Adh) hybrid promoter isolated from Zea mays. Afr J Biotechnol 15:2384–2393

    Article  Google Scholar 

  • Assunção AGL, Herrero E, Lin Y-F, Huettel B, Talukdar S, Smaczniak C, Immink RGH, van Eldik M, Fiers M, Schat H, Aarts MGM (2010) Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc Natl Acad Sci U S A 107:10296–10301

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker SS, Wilhelm KS, Thomashow MF (1994) The 5′-region of Arabidopsis thaliana COR15a has cis-acting elements that confer cold, drought and ABA-regulated gene expression. Plant Mol Biol 24(5):701–713

    Article  CAS  PubMed  Google Scholar 

  • Balazadeh S, Siddiqui H, Allu AD, Matallana-Ramirez LP, Caldana C, Mehrnia M, Zanor M-I, Köhler B, Mueller-Roeber B (2010) A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. Plant J 62:250–264

    Article  CAS  PubMed  Google Scholar 

  • Barros MD, Czarnecka E, Gurley WB (1992) Mutational analysis of a plant heat-shock element. Plant Mol Biol 19(4):665–675

    Article  CAS  PubMed  Google Scholar 

  • Bharti P, Mahajan M, Vishwakarma AK, Bhardwaj J, Yadav SK (2015) AtROS1 overexpression provides evidence for epigenetic regulation of genes encoding enzymes of flavonoid biosynthesis and antioxidant pathways during salt stress in transgenic tobacco. J Exp Bot 66(19):5959–5969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilichak A, Ilnystkyy Y, Hollunder J, Kovalchuk I (2012) The progeny of Arabidopsis thaliana plants exposed to salt exhibit changes in DNA methylation, histone modifications and gene expression. PLoS One 7(1):e30515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bors W, Heller W, Michel C, Saran M (1990) Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods Enzymol 186:343–355

    Article  CAS  PubMed  Google Scholar 

  • Boyko A, Blevins T, Yao Y, Golubov A, Bilichak A, Ilnytskyy Y, Hollander J, Meins F Jr, Kovalchuk I (2010) Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of dicer-like proteins. PLoS One 5(3):e9514

    Article  PubMed  PubMed Central  Google Scholar 

  • Butler JEF, Kadonaga JT (2002) The RNA polymerase II core promoter: a key component in the regulation of gene expression. Genes Dev 16:2583–2592

    Article  CAS  PubMed  Google Scholar 

  • Camporeale G, Oommen AM, Griffin JB, Sarath G, Zempleni J (2007) K12-biotinylated histone H4 marks heterochromatin in human lymphoblastoma cells. J Nutr Biochem 18:760–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandler VL (2001) Gene activation and gene silencing. Plant Physiol 125:145–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapin FS, Stuart Chapin F, Autumn K, Pugnaire F (1993) Evolution of suites of traits in response to environmental stress. Am Nat 142:S78–S92

    Article  Google Scholar 

  • Chatthai M, Osusky M, Osuska L, Yevtushenko D, Misra S (2004) Functional analysis of a Douglas-fir metallothionein-like gene promoter: transient assays in zygotic and somatic embryos and stable transformation in transgenic tobacco. Planta 220:118–128

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12(2):133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Zhu JK, Ranrar S, Lee BH, Hong X, Aggarwal M, Zhu JK (2010) Gene regulation during cold stress acclimation in plants. Methods Mol Biol 639:39–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czarnecka EVA, Key J, Gurley WB (1989) Regulatory domains of the Gmhsp l7. 5-E heat shock promoter of soybean. Mol Cell Biol 9:3457–3463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Bruxelles GL, Peacock WJ, Dennis ES, Dolferus R (1996) Abscisic acid induces the alcohol dehydrogenase gene in Arabidopsis. Plant Physiol 111:381–391

    Article  PubMed  PubMed Central  Google Scholar 

  • De Vetten NC, Ferl RJ (1995) Characterization of a maize G-box binding factor that is induced by hypoxia. Plant J 7:589–601

    Article  PubMed  Google Scholar 

  • Delisle AJ, Ferl RJ (1990) Characterization of the Arabídopsís Adh G-box binding factor. Plant Cell Am Soc Plant Physiol 2:547–557

    CAS  Google Scholar 

  • Ding Y, Chen Z, Zhu C (2011) Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryzasativa). J Exp Bot 62:3563–3573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong C-J, Wang Y, Yu S-S, Liu J-Y (2010) Characterization of a novel rice metallothionein gene promoter: its tissue specificity and heavy metal responsiveness. J Integr Plant Biol 52:914–924

    Article  CAS  PubMed  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought, high salt and cold responsive gene expression. Plant J 33:751–763

    Article  CAS  PubMed  Google Scholar 

  • Durack PJ, Wijffels SE, Matear RJ (2012) Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336:455–458

    Article  CAS  PubMed  Google Scholar 

  • Fei Y, Xue Y, Du P, Yang S, Deng X (2016) Expression analysis and promoter methylation under osmotic and salinity stress of TaGAPC1 in wheat (Triticum aestivum L). Protoplasma 254(2):987–996

    Google Scholar 

  • Fini A, Brunetti C, Di Ferdinando M, Ferrini F, Tattini M (2011) Stress- induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signal Behav 6(5):709–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finnegan EJ, Genger RK, Kovac K, Peacock WJ, Dennis ES (1998) DNA methylation and the promotion of flowering by vernalization. Proc Natl Acad Sci U S A 95(10):5824–5829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fordham-Skelton AP, Lilley C, Urwin PE, Robinson NJ (1997) GUS expression in Arabidopsis directed by 5′ regions of the pea metallothionein-like gene PsMTA. Plant Mol Biol 34:659–668

    Article  CAS  PubMed  Google Scholar 

  • Freeman J, Sparks CA, West J, Shewry PR, Jones HD (2011) Temporal and spatial control of transgene expression using a heat-inducible promoter in transgenic wheat. Plant Biotechnol J 9:788–796

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124:509–525

    Article  CAS  PubMed  Google Scholar 

  • Ganie SA, Dey N, Mondal TK (2016) Promoter methylation regulates the abundance of osa-miR393a in contrasting rice genotypes under salinity stress. Func Integr Genomics 16:1–11

    Article  CAS  Google Scholar 

  • Gendron JM, Pruneda-Paz JL, Doherty CJ, Gross AM, Kang SA, Kay SA (2012) Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proc Natl Acad Sci U S A 109(8):3167–3172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghasemzadeh A, Ghasemzadeh N (2011) Flavonoids and phenolic acids: role and biochemical activity in plants and human. J Med Plant Res 5(31):6697–6703

    CAS  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16(4):433–442

    Article  CAS  PubMed  Google Scholar 

  • Goyal E, Singh RS, Kanika K (2013) Isolation and functional characterization of salt overly sensitive 1 (SOS1) gene promoter from Salicornia brachiata. Biol Plant 57:465–473

    Article  CAS  Google Scholar 

  • Guiltinan MJ, Marcotte WR Jr, Quatrano RS (1990) A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250:267–271

    Article  CAS  PubMed  Google Scholar 

  • Gurley WB, Czarnecka E, Nagao RT, Key JL (1986) Upstream sequences required for efficient expression of a soybean heat shock genet. Mol Cell Biol 6:559–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hänsch R, Mendel RR, Cerff R, Hehl R (2003) Light-dependent anaerobic induction of the maize glyceraldehyde-3-phosphate dehydrogenase 4 (GapC4) promoter in Arabidopsis thaliana and Nicotiana tabacum. Ann Bot 91:149–154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haralampidis K, Milioni D, Rigas S, Hatzopoulos P (2002) Combinatorial interaction of cis elements specifies the expression of the Arabidopsis AtHsp90-1 gene. Plant Physiol 129:1138–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harmer SL, John B, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Krep JA (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290(5499):2110–2113

    Article  CAS  PubMed  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  PubMed  Google Scholar 

  • Hobo T, Asada M, Kowyama Y, Hattori T (1999) ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent. Plant J 19:679–689

    Article  CAS  PubMed  Google Scholar 

  • Hoff T, Schnorr KM, Mundy J (2001) A recombinase-mediated transcriptional induction system in transgenic plants. Plant Mol Biol 45:41–49

    Article  CAS  PubMed  Google Scholar 

  • Hou J, Jiang P, Qi S, Zhang K, He Q, Xu C, Ding Z, Zhang K, Li K (2016) Isolation and functional validation of salinity and osmotic stress inducible promoter from the maize type-II H+-pyrophosphatase gene by deletion analysis in transgenic tobacco plants. PLoS One 11:1–23

    CAS  Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki T, Yamaguchi-Shinozaki K, Shinozaki K (1995) Identification of a cis-regulatory region of a gene in Arabidopsis thaliana whose induction by dehydration is mediated by abscisic acid and requires protein synthesis. Mol Gen Genet 247:391–398

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Iu B, Singh J (1996) Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol Biol 30(3):679–684

    Article  CAS  PubMed  Google Scholar 

  • Jin T, Chang Q, Li W, Yin D, Li Z, Wang D, Liu B, Liu L (2010) Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa. Plant Cell Tissue Organ Cult 100:219–227

    Article  CAS  Google Scholar 

  • Karan R, De Leon T, Biradar H, Subudhi PK (2012) Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes. PLoS One 7(6):e40203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karin M, Haslinger A, Heguy A, Dietlin T, Cooke T (1987) Metal-responsive elements act as positive modulators of human metallothionein-IIA enhancer activity. Mol Cell Biol 7:606–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katagiri F, Chua NH (1992) Plant transcription factors: present knowledge and future challenges. Trends Genet 8:22–27

    Article  CAS  PubMed  Google Scholar 

  • Khurana N, Chauhan H, Khurana P (2013) Wheat chloroplast targeted sHSP26 promoter confers heat and abiotic stress inducible expression in transgenic Arabidopsis plants. PLoS One 8:e54418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim T-H, Böhmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+signaling. Annu Rev Plant Biol 61:561–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi T (2005) Expression of iron-acquisition-related genes in iron-deficient rice is co-ordinately induced by partially conserved iron-deficiency-responsive elements. J Exp Bot 56:1305–1316

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Nakayama Y, Itai RN, Nakanishi H, Yoshihara T, Mori S, Nishizawa NK (2003) Identification of novel cis-acting elements, IDE1 and IDE2, of the barley IDS2 gene promoter conferring iron-deficiency-inducible, root-specific expression in heterogeneous tobacco plants. Plant J 36:780–793

    Article  CAS  PubMed  Google Scholar 

  • Kohler U, Mendel RR, Cerff R, Hehl R (1996) A promoter for strong and ubiquitous anaerobic gene expression in tobacco. Plant J 10:175–183

    Article  Google Scholar 

  • Kong WW, Yang ZM (2010) Identification of iron-deficiency responsive microRNA genes and cis-elements in Arabidopsis. Plant Physiol Biochem 48:153–159

    Article  CAS  PubMed  Google Scholar 

  • Kovalchuk M,Jia W,Eini O,Morran S,Pyvovarenko T,Fletcher S,Bazanova N,Harris J,Beck-Oldach K,Shavrukov Y,Langridge P,Lopato S (2013) Optimization of TaDREB3 gene expression in transgenic barley using coldinducible promoters.Plant Biotechnol J. 11(6):659–70.)

    Google Scholar 

  • Kropat J, Tottey S, Birkenbihl RP, Depège N, Huijser P, Merchant S (2005) A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element. Proc Natl Acad Sci U S A 102:18730–18735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar K, Kumar M, Kim S-R, Ryu H, Cho Y-G (2013) Insights into genomics of salt stress response in rice. Rice (N Y) 6:27

    Article  Google Scholar 

  • Kurkela S, Franck M (1990) Cloning and characterization of a cold- and ABA-inducible Arabidopsis gene. Plant Mol Biol 15(1):137–144

    Article  CAS  PubMed  Google Scholar 

  • Kusaba M, Takahashi Y, Nagata T (1996) A multiple-stimuli-responsive as-1-related element of parA gene confers responsiveness to cadmium but not to copper. Plant Physiol 111:1161–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwok RPS, Lundblad JR, Chrivia JC, Richards JP, Bächinger HP, Brennan RG, Roberts SGE, Green MR, Goodman RH (1994) Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370:223–226

    Article  CAS  PubMed  Google Scholar 

  • Laloum T, De Mita S, Gamas P, Baudin M, Niebel A (2013) CCAAT-box binding transcription factors in plants: y so many? Trends Plant Sci 18:157–166

    Article  CAS  PubMed  Google Scholar 

  • Lang V, Palva ET (1992) The expression of a rab-related gene, rab 18, is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heyn. Plant Mol Biol 21(3):581–582

    Google Scholar 

  • Lee KT, Chen SC, Chiang BL, Yamakawa T (2007) Heat-inducible production of -glucuronidase in tobacco hairy root cultures. Appl Microbiol Biotechnol 73:1047–1053

    Article  CAS  PubMed  Google Scholar 

  • Li W-X, Oono Y, Zhu J, He X-J, Wu J-M, Iida K, Lu X-Y, Cui X, Jin H, Zhu J-K (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and post-transcriptionally to promote drought resistance. Plant Cell 20:2238–2251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Wang L, Yang ZM (2015) Co-expression analysis reveals a group of genes potentially involved in regulation of plant response to iron-deficiency. Gene 554(1):16–24

    Article  CAS  PubMed  Google Scholar 

  • Lin P, Wu L, Wei D, Chen H, Zhou M, Yao X, Linet J (2016) Promoter analysis of cold-responsive (COR) gene from Capsella bursa-pastoris and expression character in response to low temperature. Int J Agric Biol 18(2):346–352

    Article  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, VanToai T, Moy PL, Bock G, Linford LD, Quackenbush J (2005) Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis. Plant Physiol 137:1115–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lü S, Gu H, Yuan X, Wang X, Wu A-M, Qu L, Liu J-Y (2007) The GUS reporter-aided analysis of the promoter activities of a rice metallothionein gene reveals different regulatory regions responsible for tissue-specific and inducible expression in transgenic Arabidopsis. Transgenic Res 16:177–191

    Article  PubMed  CAS  Google Scholar 

  • Luo K, Sun M, Deng W, Xu S (2008) Excision of selectable marker gene from transgenic tobacco using the GM-gene-deletor system regulated by a heat-inducible promoter. Biotechnol Lett 30:1295–1302

    Article  CAS  PubMed  Google Scholar 

  • Lyznik LA, Hirayama L, Rao KV, Abad A, Hodges TK (1995) Heat-inducible expression of FLP gene in maize cells. Plant J 8:177–186

    Article  CAS  PubMed  Google Scholar 

  • Magalhaes JV, Liu J, Guimarães CT, Lana UGP, Alves VMC, Wang Y-H, Schaffert RE, Hoekenga OA, Piñeros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39:1156–1161

    Article  CAS  PubMed  Google Scholar 

  • Maruyama K, Todaka D, Mizoi J, Yoshida T, Kidokoro S, Matsukura S, Takasaki H, Sakurai T, Yamamoto YY, Yoshiwara K, Kojima M, Sakakibara H, Shinozaki K, Yamaguchi-Shinozaki K (2012) Identification of cis-acting promoter elements in cold and dehydration induced transcriptional pathways in Arabidopsis, rice, and soybean. DNA Res 19(1):37–49

    Article  CAS  PubMed  Google Scholar 

  • Maruyama K, Ogata T, Kanamori N, Yoshiwara K, Goto S, Yamamoto YY, Tokoro Y, Noda C, Takaki Y, Urawa H, Iuchi S, Urano K, Yoshida T, Sakurai T, Kojima M, Sakakibara H, Shinozaki K, Yamaguchi-Shinozaki K (2017) Design of an optimal promoter involved in the heat-induced transcriptional pathway in Arabidopsis, soybean, rice, and maize. Plant J 89:671–680

    Article  CAS  PubMed  Google Scholar 

  • Masclaux F, Charpenteau M, Takahashi T, Pont-Lezica R, Galaud JP (2004) Gene silencing using a heat-inducible RNAi system in Arabidopsis. Biochem Biophys Res Commun 321:364–369

    Article  CAS  PubMed  Google Scholar 

  • McCarty DR (1995) Genetic control and integration of maturation and germination pathways in seed development. Annu Rev Plant Physiol Plant Mol Biol 46:71–93

    Article  CAS  Google Scholar 

  • McKendree WLM Jr, Ferl RJ (1992) Functional elements of the Arabidopsis Adh promoter include the G-box. Plant Mol Biol 19(5):859–862

    Article  CAS  PubMed  Google Scholar 

  • McLoughlin F, Arisz SA, Dekker HL, Kramer G, De Koster CG, Haring MA, Munnik T, Testerink C (2013) Identification of novel candidate phosphatidic acid-binding proteins involved in the salt-stress response of Arabidopsis thaliana roots. Biochem J 450(3):573–581

    Article  CAS  PubMed  Google Scholar 

  • Meier S, Bastian R, Donaldson L, Murray S, Bajic V, Gehring C (2008) Co-expression and promoter content analyses assign a role in biotic and abiotic stress responses to plant natriuretic peptides. BMC Plant Biol 8:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meshi T, Iwabuchi M (1995) Plant transcription factors. Plant Cell Physiol 36:1405–1420

    CAS  PubMed  Google Scholar 

  • Mikkelsen MD, Thomashow MF (2009) A role for circadian evening elements in cold-regulated gene expression in Arabidopsis. Plant J 60(2):328–339

    Article  CAS  PubMed  Google Scholar 

  • Mishra RC, Grover A (2014) Intergenic sequence between Arabidopsis caseinolytic protease B-cytoplasmic/heat shock Protein100 and choline kinase genes functions as a heat-inducible bidirectional promoter. Plant Physiol 166:1646–1658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miyashita Y, Dolferus R, Ismond KP, Good AG (2007) Alanine aminotransferase catalyses the breakdown of alanine after hypoxia in Arabidopsis thaliana. Plant J 49:1108–1121

    Article  CAS  PubMed  Google Scholar 

  • Mohanty MI, Swarup S (2005) Detection and preliminary analysis of motifs in promoters of anaerobically induced genes of different plant species. Anna 96:669–68132

    CAS  Google Scholar 

  • Moriwaki M, Yamakawa T, Washino T, Kodama T, Igarashi Y, Yoshikawa T (1999) Organ-specific expression of β-glucuronidase activity driven by the Arabidopsis heat-shock promoter in heat-stressed transgenic Nicotiana plumbaginifolia. Plant Cell Rep 19:92–95

    Article  CAS  Google Scholar 

  • Muench DG, Christopher ME, Good AG (1998) Cloning and expression of a hypoxic and nitrogen inducible maize alanine aminotransferase gene. Physiol Plant 103:503–512

    Article  CAS  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34:137–148

    Article  CAS  PubMed  Google Scholar 

  • Nathan D, Ingvarsdottir K, Sterner DE, Bylebyl GR, Dokmanovic M, Jean A, Dorsey JA, Kelly A, Whelan KA, Mihajlo Krsmanovic M, William S, Lane WS, Meluh PB, Johnson ES, Berge SL (2006) Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev 20(8):966–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niklas KJ (2009) Functional adaptation and phenotypic plasticity at the cellular and whole plant level. J Biosci 34:613–620

    Article  PubMed  Google Scholar 

  • Ogo Y, Kobayashi T, Nakanishi Itai R, Nakanishi H, Kakei Y, Takahashi M, Toki S, Mori S, Nishizawa NK (2008) A novel NAC transcription factor, IDEF2, that recognizes the iron deficiency-responsive element 2 regulates the genes involved in iron homeostasis in plants. J Biol Chem 283:13407–13417

    Article  CAS  PubMed  Google Scholar 

  • Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K (2017) Transcriptional regulatory network of plant heat stress response. Trends Plant Sci 22(1):53–65

    Article  CAS  PubMed  Google Scholar 

  • Oki M, Aihara H, Ito T (2007) Role of histone phosphorylation in chromatin dynamics and its implications in diseases. Subcell Biochem 41:319–336

    PubMed  Google Scholar 

  • Olive MR, Peacock WJ, Dennis ES (1991) The anaerobic responsive element contain two GC rich sequences essential for binding to a nuclear protein and hypoxic activation of the maize Adh1 promoter. Nuclec Acids Res 19:7053–7060

    Google Scholar 

  • Pelham HRB (1982) A regulatory upstream promoter element in the Drosophila Hsp 70 heat-shock gene. Cell 30:517–528

    Article  CAS  PubMed  Google Scholar 

  • Pillai M, Lihuang Z, Akiyama T (2002) Molecular cloning, characterization, expression and chromosomal location of OsGAPDH, a submergence responsive gene in rice. Theor Appl Genet 105(1):34–42

    Article  CAS  Google Scholar 

  • Prajapati GK, Kashyap N, Kumar A, Pandey DM (2013) Identification of GCC box in the promoter region of ubiquinol cytochrome C chaperone gene using molecular beacon probe and its in silico protein-DNA interaction study in rice (Oryza sativa L.) Int J Comput Bioinforma Silico Model 2:213–222

    Google Scholar 

  • Qi X, Zhang Y, Chai T (2007) Characterization of a novel plant promoter specifically induced by heavy metal and identification of the promoter regions conferring heavy metal responsiveness. Plant Physiol 143:50–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinn JM (2000) Coordinate copper- and oxygen-responsive Cyc6 and Cpx1 expression in Chlamydomonas is mediated by the same element. J Biol Chem 275:6080–6089

    Article  CAS  PubMed  Google Scholar 

  • Quinn JM, Merchant S (1995) Two copper-responsive elements associated with the Chlamydomonas Cyc6 gene function as targets for transcriptional activators. Plant Cell 7:623–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinn JM, Kropat J, Merchant S (2003) Copper response element and Crr1-dependent Ni(2+)-responsive promoter for induced, reversible gene expression in Chlamydomonas reinhardtii. Eukaryot Cell 2:995–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren Y, Zhao J (2009) Functional analysis of the rice metallothionein gene OsMT2b promoter in transgenic Arabidopsis plants and rice germinated embryos. Plant Sci 176:528–538

    Article  CAS  PubMed  Google Scholar 

  • Ricoult C, Echeverria LO, Cliquet JB, Limami AM (2006) Characterization of alanine aminotransferase (AlaAT) multigene family and hypoxic response in young seedlings of the model legume Medicago truncatula. J Exp Bot 57:3079–3089

    Article  CAS  PubMed  Google Scholar 

  • Rieping M, Schöffl F (1992) Synergistic effect of upstream sequences, CCAAT box elements, and HSE sequences for enhanced expression of chimaeric heat shock genes in transgenic tobacco. Mol Gen Genet 231:226–232

    CAS  PubMed  Google Scholar 

  • Rocha M, Sodek L, Licausi F, Hameed MW, Dornelas MC, Van Dongen JT (2010) Analysis of alanine aminotransferase in various organs of soybean (Glycine max) and in dependence of different nitrogen fertilisers during hypoxic stress. Amino Acids 39:1043–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan PR, Raman H, Gupta S, Sasaki T, Yamamoto Y, Delhaize E (2010) The multiple origins of aluminium resistance in hexaploid wheat include Aegilops tauschii and more recent cis mutations to TaALMT1. Plant J 64:446–455

    Article  CAS  PubMed  Google Scholar 

  • Safdar W, Ahmed H, Bostan N, Zahra NB, Sharif HR, Haider J, Abbas S (2016) Comparative analysis of nine different small heat shock protein gene promoters in Oryza sativa L. subsp. indica. Plant Syst Evol 302:1195–1206

    Article  CAS  Google Scholar 

  • Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci U S A 103:18822–18827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh R (2002) ACTCAT, a novel cis-acting element for proline- and hypoosmolarity-responsive expression of the ProDH gene encoding proline dehydrogenase in Arabidopsis. Plant Physiol 130:709–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmülling T, Beinsberger S, De Greef J, Schell J, Van Onckelen H, Spena A (1989) Construction of a heat-inducible chimaeric gene to increase the cytokinin content in transgenic plant tissue. FEBS Lett 249:401–406

    Article  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakliet M. al(2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot:1–26

    Google Scholar 

  • Shen Q, Ho T-HD (1995) Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell 7:295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Q, Zhang P, Ho TH (1996) Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell 8:1107–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Quintero FJ, Pardo JM, Zhu J-K (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson SD, Nakashima K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J 33:259–270

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Dang TTM, Vergara GV, Pandey DM, Sanchez D, Neeraja CN, Septiningsih EM, Mendioro M, Tecson-Mendoza EM, Ismail AM, Mackill DJ, Heuer S (2010) Molecular marker survey and expression analyses of the rice submergence-tolerance gene SUB1A. Theor Appl Genet 121:1441–1453

    Article  CAS  PubMed  Google Scholar 

  • Spena A, Schell J (1987) The expression of a heat-inducible chimeric gene in transgenic tobacco plants. Mol Gen Genet 206:436–440

    Article  CAS  Google Scholar 

  • Spena A, Hain R, Ziervogel U, Saedler H, Schell J (1985) Construction of a heat-inducible gene for plants. Demonstration of heat-inducible activity of the Drosophila hsp70 promoter in plants. EMBO J 4:2739–2743

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sridhar VV, Kapoor A, Zhang K, Zhu J, Zhou T, Hasegawa PM, Bressan RA, Zhu JK (2007) Control of DNA methylation and heterochromatic silencing by histone H2B de-ubiquitination. Nature 447(7145):735–738

    Article  CAS  PubMed  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A 94(3):1035–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storozhenko S, De Pauw P, Van Montagu M, Inzé D, Kushnir S (1998) The heat-shock element is a functional component of the Arabidopsis APX1 gene promoter. Plant Physiol 118:1005–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sultan SE (1995) Phenotypic plasticity and plant adaptation. Acta Bot Neerl 44:363–383

    Article  Google Scholar 

  • Sun N, Liu M, Zhang W, Yang W, Bei X, Ma H, Qiao F, Qi X (2015) Bean metal-responsive element-binding transcription factor confers cadmium resistance in tobacco. Plant Physiol 167:1136–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi T, Naito S, Komeda Y (1992) The Arabidopsis HSP18.2 promoter/GUS gene fusion in transgenic Arabidopsis plants: a powerful tool for the isolation of regulatory mutants of the heat-shock response. Plant J 2:751–761

    Article  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  PubMed  Google Scholar 

  • Tran L-SP (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell Online 16:2481–2498

    Article  CAS  Google Scholar 

  • Tran LP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuji H, Saika H, Tsutsumi N, Hirai A, Nakazono M (2006) Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence-inducible genes in rice. Plant Cell Physiol 47(7):995–1003

    Article  CAS  PubMed  Google Scholar 

  • Tsutsui T, Yamaji N, Feng Ma J (2011) Identification of a cis-acting element of ART1, a C2H2-type zinc-finger transcription factor for aluminum tolerance in rice. Plant Physiol 156:925–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci U S A 97:11632–11637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanyushin BF, Ashapkin VV (2011) DNA methylation in higher plants: past, present and future. Biochim Biophys Acta 1809:360–368

    Article  CAS  PubMed  Google Scholar 

  • Vazquez-Tello A, Ouellet F, Sarhan F (1998) Low temperature- stimulated phosphorylation regulates the binding of nuclear factors to the promoter of Wcs120, a cold-specific gene in wheat. Mol Gen Genet 257:157–166

    Article  CAS  PubMed  Google Scholar 

  • Walker JC, Howard EA, Dennis ES, Peacock WJ (1987) DNA sequences required for anaerobic expression of the maize alcohol dehydrogenase 1 gene. Biochemistry 84:6624–6628

    CAS  Google Scholar 

  • Chen Ming, Wang li-Xa, Peng Xiang-Lei, Xu Hui-Jun Z-P Lin (2003) Gene expression controlled by heat-inducible site specific recombination in tobacco. Acta Bot Sin 45:1481–1488

    Google Scholar 

  • Whitelaw CA, Le Huquet JA, Thurman DA, Tomsett AB (1997) The isolation and characterisation of type II metallothionein-like genes from tomato (Lycopersicon esculentum L.) Plant Mol Biol 33(3):503–511

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm K, Thomashow MF (1993) Arabidopsis thaliana corl5b, an apparent homologue of corl5a, is strongly responsive to cold and ABA, but not drought. Plant Mol Biol 23(5):1073–1077

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K (2009) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28:21–30

    Article  CAS  PubMed  Google Scholar 

  • Xhemalce B, Dawson MA, Bannister AJ (2011) Histone modifications. In: Meyers R (ed) Encyclopedia of molecular cell biology and molecular medicine. Wiley, Weinheim

    Google Scholar 

  • Yabe N, Takahashi T, Komeda Y (1994) Analysis of tissue-specific expression of Arabidopsis thaliana Hsp90-family gene HSP81. Plant Cell Physiol 35(8):1207–1219

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6(2):251–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Zeng L, Deng R, Guo Z, Yang S, Deng X (2016) Genome-wide identification and characterization of Glyceraldehyde-3-phosphate dehydrogenase genes family in wheat (Triticumaestivum). BMC Genomics 17:240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang L, Wang Y, Zhang X (2012) Dynamics of phytohormone and DNA methylation patterns changes during dormancy induction in strawberry (Fragaria×ananassa Duch.) Plant Cell Rep 31(1):155–165

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Sun T, Liu S, Dong L, Liu C, Song W, Lui J, Gai S (2016) MYC cis-elements in PsMPT promoter is involved in chilling response of Paeonia suffruticosa. PLoS One 11(5)

    Google Scholar 

  • Zhao H, Butler E, Rodgers J, Spizzo T, Duesterhoeft S, Eide D (1998) Regulation of zinc homeostasis in yeast by binding of the ZAP1 transcriptional activator to zinc-responsive promoter elements. J Biol Chem 273:28713–28720

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Pan Y, Li J, Zhou Y, Pan Y, Ding Y (2016) Visible marker excision via heat-inducible Cre/LoxP system and Ipt selection in tobacco. Vitr Cell Dev Biol 52(5):492–499

    Article  CAS  Google Scholar 

  • Zhou M-L, Qi L-P, Pang J-F, Zhang Q, Lei Z, Tang Y-X, Zhu X-M, Shao J-R, Wu Y-M (2013) Nicotianamine synthase gene family as central components in heavy metal and phytohormone response in maize. Funct Integr Genomics 13:229–239

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Jeong JC, Zhu Y et al (2008) Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proc Natl Acad Sci U S A 105(12):4945–4950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in our laboratory on plant promoters has received financial support from DBT, Government of India (grant number BT/PR14532/AGR/36/673/2010), and UGC, Government of India (grant number 40-170/2011(SR). Research grant received from the University of Delhi through Research and Development (R&D) grant is also acknowledged. AJ and GJ are thankful to UGC for financial support in the form of JRF and SRF; CC acknowledges DBT for financial support as JRF/SRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jain, A., Joshi, G., Chauhan, C., Das, S. (2018). Abiotic Stress Response in Plants:A Cis-Regulatory Perspective. In: Zargar, S., Zargar, M. (eds) Abiotic Stress-Mediated Sensing and Signaling in Plants: An Omics Perspective. Springer, Singapore. https://doi.org/10.1007/978-981-10-7479-0_6

Download citation

Publish with us

Policies and ethics