Skip to main content

Reactive Oxygen Species (ROS): A Way to Stress Survival in Plants

  • Chapter
  • First Online:

Abstract

Aerobic organisms which derive their energy from the reduction of oxygen are susceptible to the damaging actions of the small amounts of O2 āˆ’, OH, and H2O2 that inevitably form during the metabolism of oxygen, especially in the reduction of oxygen by the electron transfer system of mitochondria. These three species together with unstable intermediates in the peroxidation of lipids are referred to as reactive oxygen species (ROS). They are formed as a natural by-product of the normal metabolism of oxygen and have important roles in cell signaling and homeostasis. ROS are thought to play a dual role in plant biology and are accumulated by many types of stresses. Some are highly toxic and rapidly detoxified by various cellular enzymatic and nonenzymatic mechanisms, whereas many are involved in various metabolic as well as physiological processes necessary for growth and development of plants. During environmental stress of plants (e.g., UV or heat exposure), ROS levels can increase dramatically. The ROS levels that are too low or too high impair plant growth and development, whereas maintaining ROS levels within the right range promotes plant health. Alterations in ROS levels that are part of the normal function of the plant should not exceed the threshold boundary between redox potentials and cytotoxic or cytostatic levels. Although recent studies have unraveled some of the key issues related to ROS like programmed cell death and cross talk with phytohormones during stress conditions, yet there are some unprecedented mechanisms which need to be expolred.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achard P, Genschik P (2009) Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. J Exp Bot 60(4):1085ā€“1092

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357ā€“3365

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91ā€“94

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008a) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20:2117ā€“2129

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Achard P, Renou JP, Berthome R, Harberd NP, Genschik P (2008b) Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr Biol 18:656ā€“660

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Alcazar R et al (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237ā€“1249

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Amasino R (2010) Seasonal and developmental timing of flowering. Plant J 61:1001ā€“1013

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • AndrĆ©s F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13:627ā€“639

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu Rev Plant Biol 55:373ā€“399

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Apostol I, Heinstein PF, Low PS (1989) Rapid stimulation of an oxidative brust during elicidation of cultured plant cells. Role in defense and signal transduction. Plant Physiol 90:106ā€“116

    ArticleĀ  Google ScholarĀ 

  • Asada K (1994) Production and action of active oxygen in photosynthetic tissue. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defence systems in plants. CRC Press, Boca Raton, pp 77ā€“104

    Google ScholarĀ 

  • Asada K (1999) The water-water cycle in chloroplast: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Biol 50:601ā€“639

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplast and their functions. Plant Physiol 141:1621ā€“1633

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ et al (ed) Photoinhibition (Topics in photosynthesis). 9:227ā€“287

    Google ScholarĀ 

  • Bahin E, Bailly C, Sotta B, Kranner I, Corbineau F, Leymarie J (2011) Crosstalk between reactive oxygen species and hormonal signaling pathways regulates grain dormancy in barley. Plant Cell Environ 34:980ā€“993

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bailly C, Benamar A, Corbineau F, CoĖ†me D (1996) Changes in superoxide dismutase, catalase and glutathione reductase activities as related to seed deterioration during accelerated aging of sunflower seeds. Physiol Plant 97:104ā€“110

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bailly C, El-Maarouf-Bouteau H, Corbineau F (2008) From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. C R Biol 331:806ā€“814

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Baishnab CT, Ralf O (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav 7:1621ā€“1633

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Baniulis D, Hasan SS, Stofleth JT, Cramer WA (2013) Mechanism of enhanced superoxide production in the cytochrome b(6)f complex of oxygenic photosynthesis. Biochemist 52:8975ā€“8983

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Barba-Espin G, Diaz-Vivancos P, Clemente-Moreno MJ, Albacete A, Faize L, Faize M, Perez-Alfocea F, Hernandez JA (2010) Interaction between hydrogen peroxide and plant hormones during germination and the early growth of pea seedlings. Plant Cell Environ 33:981ā€“994

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365ā€“377. https://doi.org/10.1111/j.1461-0248.2011.01736.x

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bhattacharjee S (2005) Reactive oxygen species and oxidative brust: roles in stress, senescence and signal transduction in plants. Curr Sci 89(7):1112ā€“1121

    Google ScholarĀ 

  • Blanvillain R, Wei S, Wei P, Kim JH, Ow DW (2011) Stress tolerance to stress escape in plants: role of the OXS2 zinc-finger transcription factor family. EMBO J 30:3812ā€“3822

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • BlĆ”zquez MA, Green R, Nilsson O, Sussman MR, Weigel D (1998) Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell 10:791ā€“800

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Blazquez MA, Ahn HH, Weigel D (2003) A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat Genet 33:168ā€“171

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • BlĆ¼mel M, Dally N, Jung C (2014) Flowering time regulation in cropsā€”what did we learn from Arabidopsis? Curr Opin Biotechnol 32C:121ā€“129

    Google ScholarĀ 

  • Boguszewska D, Grudkowska M, Zagdanska B (2010) Drought-responsive antioxidant enzymes in potato (solanum tuberosum L.) Potato Res 53:373ā€“382

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bolwell GP, Bindschedler LV, Blee KA, Butt VS, Davis DR et al (2002) The apoplastic oxidative brust in response to biotic stress in plants: a three-component system. J Exp Bot 53:1367ā€“1376

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Bonhomme F, Kurz B, Melzer S, Bernier G, Jacqmard A (2000) Cytokinin and gibberellin activate SaMADS A, a gene apparently involved in regulation of the floral transition in Sinapis alba. Plant J 24:103ā€“111

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bowler C et al (1991) Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J 10:1723ā€“1732

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Phytopathologists, Rockville, pp 1158ā€“1203

    Google ScholarĀ 

  • Caliskan M, Cuming AC (1998) Spatial specificity of H2O2-generating oxalate oxidase gene expression during wheat embryo germination. Plant J 15:165ā€“171

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cao S, Jiang S, Zhang R (2006) The role of GIGANTEA gene in mediating the oxidative stress response and in Arabidopsis. Plant Growth Regul 48:261ā€“270

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Chamnongpol S et al (1998) Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. PNAS 95:5818ā€“5823

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Chen Z, Gallie DR (2006) Dehydroasorbate reductase affects leaf growth, development and function. Plant Physiol 142:775ā€“787

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Cheng H, Qin L, Lee S, Fu X, Richards DE, Cao D, Luo D, Harberd NP, Peng J (2004) Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131:1055ā€“1064

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chew O et al (2003) Characterization of the targeting signal of dual-targeted pea glutathione reductase. Plant Mol Biol 53:341ā€“356

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Claeys H, Skirycz A, Maleux K, Inze D (2012) DELLA signaling mediates stress-induced cell differentiation in Arabidopsis leaves through modulation of anaphase-promoting complex/cyclosome activity. Plant Physiol 159:739ā€“747

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Colebrook EH, Thomas SG, Phillips AL, Hedden P (2014) The role of gibberellin signaling in plant responses to abiotic stress. J Exp Biol 217:67ā€“75

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Conti H (2017) Hormonal control of the floral transition: can one catch them all? Develop Biol. https://doi.org/10.1016/j.ydbio.2017.03.024

  • Coupland G (1995) Genetic and environmental control of flowering time in Arabidopsis. Trends Genet 11:393ā€“397

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Dai M, Zhao Y, Ma Q, Hu Y, Hedden P, Zhang Q, Zhou DX (2007) The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism. Plant Physiol 144:121ā€“133

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Das K, Roychoudhary A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS- scavengers during environmental stress in plants. Front Plant Sci 2:1ā€“13

    CASĀ  Google ScholarĀ 

  • Davies PJ (2010) The plant hormones: their nature, occurrence, and function. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action! Springer, Dordrecht, pp 1ā€“15

    ChapterĀ  Google ScholarĀ 

  • Davis SJ (2009) Integrating hormones into the floral-transition pathway of Arabidopsis thaliana. Plant Cell Environ 32:1201ā€“1210

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • De Smet I, Voss U, Lau S, Wilson M, Shao N, Timme RE, Swarup R, Kerr I, Hodgman C, Bock R, Bennet M, Jurgens G, Beeckman T (2010) Unraveling the evolution of auxin signaling. Plant Physiol 155:209ā€“221

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Demidchik V et al (2009) Plant extracellular ATP signaling by plasma membrane NADPH oxidase and Ca2+ channels. Plant J 58:903ā€“913

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Dietz KJ, Turkan I, Krieger-Liszkay A (2016) Redox and reactive oxygen species-dependent signaling in and from the photosynthesizing chloroplast. Plant Physiol 171:1541ā€“1550

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Dietzel L, Brautigam K, Pfannschmidt T (2008) Photosynthetic acclimation: state transitions and adjustment of photosystem stoichiometryĀ ā€“ functional relationship between short-term and long-term light quality acclimation in plants. FEBS J 275:1080ā€“1088

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Diezel C, Allmann S, Baldwin IT (2011) Mechanisms of optimal defense patterns in Nicotiana attenuata: flowering attenuates herbivory-elicited ethylene and jasmonate signaling. J Integr Plant Biol 53:971ā€“983

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Dill A, Sun T (2001) Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics 159:777ā€“785

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Dirk I, Marc VM (1995) Oxidative stress in plants. Curr Opin Biotechnol 6:153ā€“158

    ArticleĀ  Google ScholarĀ 

  • Dybing E, Nelson JR, Mitchell JR, Sesame HA, Gillette JR (1976) Oxidation of a methyldopa and other catechols by cytochromes R450 generated superoxide anion: possible mechanism of methyldopa hepatitis. Mol Pharamacol 12:911ā€“920

    CASĀ  Google ScholarĀ 

  • Eckardt NA (2007) GA signaling: direct targets of DELLA proteins. Plant Cell 19:2970

    Google ScholarĀ 

  • Edwards EA, Rawsthorne S, Mullineaux PM (1990) Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.) Planta 180(2):278ā€“284

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861ā€“864

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Eimert K, Wang SM, Lue WL, Chen J (1995) Monogenic recessive mutations causing both late floral initiation and excess starch accumulation in Arabidopsis. Plant Cell 7:1703ā€“1712

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Elstner EF (1991) Mechanism of oxygen activation in different compartments of plant cell. In: Pellend EJ, Steffen KL (eds) Active oxygen/oxidative stress in plant metabolism. Am. Soc. Plant Physiol., Rockville, pp 13ā€“25

    Google ScholarĀ 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Saneklata T, Shibahara T et al (2007) Ovderexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255ā€“1264

    Google ScholarĀ 

  • Fahad S, Bano A (2012) Effect of salicylic acid on physiological and biochemical characterization of maize grown in saline area. Pak J Bot 44:1433ā€“1438

    Google ScholarĀ 

  • Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan FA, Khan F, Chen YT, Wu C, Tabassum MA, Chun MX, Afzal M, Jan A, Jan MT, Huang JL (2015) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22:4907ā€“4921

    ArticleĀ  Google ScholarĀ 

  • Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J (1999) GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J 18:4679ā€“4688

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Foyer CH, Harbinson JC (1994) Oxygen metabolism and the regulation of photosynthetic electron transport. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defence systems in plants. CRC Press, Boca Raton, pp 1ā€“42

    Google ScholarĀ 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation and practical implications. Antioxid Redox Signal 11:861ā€“905

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ghisla S, Massey V (1989) Mechanism of flavoprotein catalyzed reactions. Euro J Biochem 181(1):1ā€“17

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Gilory S, Suzuki N, Miller G, Choi WG, Toyota M, Devireddy AR, Mittler R (2014) A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci 19:623ā€“630

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Gilory S, Bialasek M, Suzuki N, Gorecka M, Devireddy A, Karpinski S, Mittler R (2016) ROS, calcium and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol 171:1606ā€“1615

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Giuliani S, Sanguineti MC, Tuberosa R, Bellotti M, Salvi S, Landi P (2005) Root-ABA1 a major constitutive QTL affects maize root architecture and leaf ABA concentration at different water regimes. J Exp Bot 56:3061ā€“3070

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gocal GFW, Poole AT, Gubler F, Watts RJ, Blundell C, King RW (1999) Long-day up-regulation of a GAMYB gene during Lolium temulentum inflorescence formation. Plant Physiol 119:1271ā€“1278

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Gocal GFW, Sheldon CC, Gubler F et al (2001) GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis. Plant Physiol 127:1682ā€“1693

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Griffiths J, Murase K, Rieu I, Zentella R, Zhang ZL, Powers SJ, Gong F, Phillips AL, Hedden P, Sun TP et al (2006) Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 18:3399ā€“3414

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Han Y, Zhang X, Wang Y, Ming F (2013) The suppression of WRKY44 by GIGANTEA-miR172 pathway is involved in drought response of Arabidopsis thaliana. PLoS One 8:e73541

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298ā€“300

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Harman D (1981) The aging process. Proc Natl Acad Sci USA 78:7124ā€“7128

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hedden P, Thomas SG (2012) Gibberellin biosynthesis and its regulation. Biochem J 444:11ā€“25

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Heil M, Bostock RM (2002) Induced systemic resistance (ISR) against pathogens in the context of induced plant defenses. Ann Bot 89:503ā€“512

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hite DR, Auh C, Scandalios JG (1999) Catalase activity and hydrogen peroxide levels are inversely correlated in maize scutella during seed germination. Redox Rep 4:29ā€“34

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Huang S, Van Aken O, Schwarzlander M, Belt K, Millar A (2016) The roles of mitochondrial reactive oxygen species in cellular signaling and stress responses in plants. Plant Physiol 171:1551ā€“1559

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Huq E, Tepperman JM, Quail PH (2000) GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc Natl Acad Sci U S A 97:9789ā€“9794

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hwang I, Chen HC, Sheen J (2002) Two component signal transduction pathways in Arabidopsis. Plant Physiol 129:500ā€“515

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J (2001) Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13:999ā€“1010

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Iqbal N, Umar S, Khan NA, Khan MIR (2014) A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environ Exp Bot 100:34ā€“42

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ishibashi Y, Tawaratsumida T, Zheng SH, Yuasa T, Iwaya-Inoue M (2010) NADPH oxidases act as key enzyme on germination and seedling growth in barley ( L.). Plant Prod Sci 13(1):45ā€“52

    Google ScholarĀ 

  • Ishibashi Y, Tawaratsumida T, Kondo K, Kasa S, Sakamoto M, Aoki N, Zheng SH, Yuasa T, Mari II (2012) Reactive oxygen species are involved in gibberellin/abscisic acid signaling in Barley Aleurone cells. Plant Physiol 158:1705ā€“1714

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Javid MG, Sorooshzadeh A, Moradi F, Sanavy SAMM, Allahdadi I (2011) The role of phytohormones in alleviating salt stress in crop plants. Aust J Crop Sci 5:726ā€“734

    CASĀ  Google ScholarĀ 

  • Kasahara H, Hanada A, Kuzuyama T, Takagi M, Kamiya Y, Yamaguchi S (2002) Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis. J Biol Chem 277:45188ā€“45194

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kazan K, Lyons R (2016) The link between flowering time and stress tolerance. J Exp Bot 67(1):47ā€“60

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kerchev PI, Waszczak C, Lewansowska A et al (2016) Lack of GLYCOLATE OXIDASE 1, but not GLYCOLATE OXIDASE 2, attenuates the photorespiratory phenotype of CATALASE2-deficient Arabidopsis. Plant Physiol 171:1704ā€“1719

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • King RW, Moritz T, Evans LT, Junttila O, Herlt AJ (2001) Long day induction of flowering in Lolium temulentum involves sequential increases in specific gibberellins at the shoot apex. Plant Physiol 127:624ā€“632

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kleine T, Leister D (2016) Rerograde signaling: organelles go net-working. Biochim Biophys Acta 1857:1313ā€“1325

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kobayashi M et al (2007) Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 19:1065ā€“1080

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Koornneef M, Hanhart CJ, Van der Veen JH (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 299:57ā€“66

    ArticleĀ  Google ScholarĀ 

  • Koornneef M, Alonso-Blanco C, Blankestijin-de Vries H, Hanhart CJ, Peeters AJ (1998) Genetic interactions among late-flowering mutants of Arabidopsis. Genetics 148:885ā€“892

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. PNAS 97:2940ā€“2945

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kurepa J, Smalle J, Montagu MV, Linz D (1998) Oxidative stress tolerance and longevity in Arabidopsis: the late flowering mutant gigantea is tolerant to paraquat. Plant J 14(6):759ā€“764

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lee S, Choi H, Suh S, Doo IS, Oh KY et al (1999) Oligigalacturonic acid and Chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis. Plant Physiol 121:147ā€“152

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lee S, Cheng H, King KE, Wang W, Husssain A, Lo J, Harberd NP, Peng J (2002) Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is upregulated following imbibition. Genes Develop 16:646ā€“658

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lehner A, Bailly C, Flechel B, Poels P, CoĖ†me D, Corbineau F (2006) Changes in wheat seed germination ability, soluble carbohydrate and antioxidant enzyme activities in the embryo during the desiccation phase of maturation. J Cereal Sci 43:175ā€“182

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Liu Y, Ye N, Liu R, Chen M, Zhang J (2010) H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. J Exp Bot 61:2979ā€“2990

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2004) Dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J 37:720ā€“729

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mahalingam R, Fedoroff N (2003) Stress response, cell death and signalling: the many faces of reactive oxygen species. Physiol Plant 119:56ā€“68

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Malan C, Gregling MM, Gressel J (1990) Correlation between CuZn superoxide dismutase and glutathione reductase and environmental and xenobiotic stress tolerance in maize inbreds. Plant Sci 69:157ā€“166

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Martin GM, Austad SN, Johnson TE (1996) Genetic analysis of aging: role of oxidative damage and environmental stresses. Nat Genet 13:25ā€“34

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Martinez C, Pons E, Prates G, Leon J (2004) Salicylic acid regulates flowering time and links defense response and reproductive development. Plant J 37:209ā€“217

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Michaels SD (2009) Flowering time regulation produces much fruit. Curr Opin Plant Biol 12:75ā€“80

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949ā€“956

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Michaels SD, Amasino RM (2001) Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell 13:935ā€“941

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Mignolet-Spruyt L, Xu E, Idanheimo N, Hoeberichts FA, Muhlenbock P, Brosche M, Van Breusegem F, Kangasjarvi J (2016) Spreading the news: subcellular and orgnaller reactrive oxygen species production and signaling. J Exp Bot 67:3831ā€“3844

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Miller G, Schlauch K, Tam R, Cortes D, Shulaev V, Dangl JL, Mittler R (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal 2(84):ra45. https://doi.org/10.1126/scisignal.2000448

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Mittler R (2002) Oxidative stress, anti-oxidants and stress tolerance. Trends Plant Sci 7:405ā€“410

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mittler M (2017) ROS are good. Trends Plant Sci 22(1):11ā€“19

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen species gene network of plants. Trends Plant Sci 9:490ā€“498

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vanserpoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300ā€“309

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Moon J, Suh SS, Lee H, Choi KR, Hong CB, Paek NC, Kim SG, Lee I (2003) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J 35:613ā€“623

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Moon J, Lee H, Kim M, Lee I (2005) Analysis of flowering pathway integrators in Arabidopsis. Plant Cell Physiol 46:292ā€“299

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Muller K, Carstens AC, Linkies A, Torres MA, Leubner-Metzger G (2009a) The NADPH-oxidase AtrbohB plays a role in Arabidopsis seed after-ripening. New Phytol 184:885ā€“897

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Muller K, Linkies A, Vreeburg RAM, Fry SC, Krieger-Liszkay A, Leubner-Metzger G (2009b) In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. Plant Physiol 150:1855ā€“1865

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Murakami S, Johnson TE (1996) A genetic pathways conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics 143:1207ā€“1218

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Mutasa-Gottgens E, Hedden P (2009) Gibberellin as a factor in floral regulatory networks. J Exp Bot 60(7):1979ā€“1989

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Nedelcu AM (2005) Sex as a response to oxidative stress: stress genes co-opted for sex. Proc Biol Sci 272:1935ā€“1940

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ngamau K (2006) Selection for early flowering, temperature and salt tolerance of Zantedeschia aethiopica ā€˜Green Goddessā€™. https://doi.org/10.17660/ActaHortic.2008.766.19

  • Oā€™Brien JA, Benkova E (2013) Cytokinin cross-talking during biotic and abiotic stress responses. Front Plant Sci 4:451. https://doi.org/10.3389/fpls.2013.00451

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Oā€™Neill DP, Davidson SE, Clarke VC, Yamauchi Y, Yamaguchi S, Kamiya Y, Reid JB, Ross JJ (2010) Regulation of the gibberellin pathway by auxin and DELLA proteins. Planta 232:1141ā€“1149

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Ogasawara Y et al (2008) Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J Biol Chem 283:8885ā€“8892

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ogawa K, Iwabuchi M (2001) A mechanism for promoting the germination of Zinnia elegans seeds by hydrogen peroxide. Plant Cell Physiol 42:286ā€“291

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Oracz K, El-Maarouf Bouteau H, Farrant JM, Cooper K, Belghazi M, Job C, Job D, Corbineau F, Bailly C (2007) ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J 50:452ā€“465

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Oracz K, El-Maarouf-Bouteau H, Kranner I, Bogatek R, Corbineau F, Bailly C (2009) The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. Plant Physiol 150:494ā€“505

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Park DH, Somers DE, Kim YS, Choy YH, Lim HK, Soh MS, Kim HJ, Kay SA, Nam HG (1999) Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 185:1579ā€“1582

    ArticleĀ  Google ScholarĀ 

  • Park HJ, Kim W-Y, Yun D-J (2016) A new insight of salt stress signaling in plant. Mol Cells 39(6):447ā€“459

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP (1997) The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev 11:3194ā€“3205

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Pereira A (2016) Plant abiotic stress challenges from the changing environment. Front Plant Sci 7:1123ā€“1125

    Google ScholarĀ 

  • Pesaresi P, Hertle A, Pribil M et al (2009) Arabidopsis STN7 kinase provides a link between short- and long-term photosynthetic acclimation. Plant Cell 21:2402ā€“2423

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Potters G et al (2009) Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant Cell Environ 32:158ā€“169

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Prasad TK, Anderson MD, Martin BA, Stewart CR (1994) Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6:65ā€“74

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Puntarulo S, Sanchez RA, Boveris A (1988) Hydrogen peroxide metabolism in soybean embryonic axes at the onset of germination. Plant Physiol 86:626ā€“630

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Riboni M, Test AR, Galbiati M, Tonelli C, Conti L (2014) Environmental stress and flowering timeĀ ā€“ the photoperiodic connection. Plant Sign Behav 9:e29036

    ArticleĀ  Google ScholarĀ 

  • Rodriguez-Serrano M, Romero-Puerteas MC, Sanz-Fernandez M, Hu J, Sandalio LM (2016) Peroxisomes extend peroxules in a fast response to stress via a reactive oxygen species-mediated induction of the peroxin PEX11a. Plant Physiol 171:1665ā€“1674

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Sarvajeet SG, Narendra T (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909ā€“930

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Schopfer P, Plachy C, Frahry G (2001) Release of reactive oxygen intermediates (speroxide radicals, hydrogen peroxide, and hydrogen radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin and abscisic acid. Plant Physiol 125:1591ā€“1602

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Sharma P, Dubey RS (2004) Ascorbate peroxidase from rice seedlings: properties of enzyme isoforms, effects of stresses and protective roles of osmolytes. Plant Sci 167:541ā€“550

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sheldon CC, Burn JE, Perez PP, Metzger J, Edwards JA, Peacock WJ, Dennis ES (1999) The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11:445ā€“458

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Sheng XF, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036ā€“1042

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Silverstone AL, Sun T (2000) Gibberellins and the green revolution. Trends Plant Sci 5:1ā€“2

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Silverstone AL, Chang CW, Krol E, Sun TP (1997) Developmental regulation of the gibberellin biosynthetic gene GA1 in Arabidopsis thaliana. Plant J 12:9ā€“19

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Silverstone AL, Ciampaglio CN, Sun TP (1998) The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10:155ā€“169

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Silverstone AL, Jung HS, Dill A, Kawaide H, Kamiya Y, Sun TP (2001) Repressing a repressor: gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell 13:1555ā€“1566

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Skirycz A, InzĆ© D (2010) More from less: plant growth under limited water. Curr Opin Biotechnol 21:197ā€“203

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Skirycz A, Claeys H, Bodt SD, Oikawa A, Shinoda S, Andriankaja M, Maleux K, Eloy NB, Coppens F, Yoo SD, Saito K, Inze D (2011) Pause-and-stop: the effects of osmotic stress on cell proliferation during early leaf development in Arabidopsis and a role for ethylene signaling in cell cycle arrest. Plant Cell 23:1876ā€“1888

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Sponsel VM, Hedden P (2004) Gibberellin, biosynthesis and inactivation. In: Davies PJ (ed) Plant hormones biosynthesis, signal transduction, action! Springer, Dordrecht, pp 63ā€“94

    Google ScholarĀ 

  • Sreenivasulu N, Radchuk V, Alawady A, Borisjuk L, Weier D, Staroske N, Fuchs J, Miersch O, Strickert M, Usadel B, Wobus U, Grimm B, Weber H, Weschke W (2010) De-regulation of abscisic acid contents causes abnormal endosperm development in the barley mutant seg8. Plant J 64:589ā€“603

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68:2013ā€“2037

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sun T (2008) Gibberellin metabolism, perception and signaling pathways in Arabidopsis. Tha Arabidopsis Book. e0103. doi: https://doi.org/10.1199/tab.0103

  • Swarbrick PJ, Schulze-Lefert P, Scholes JD (2006) Metabolic consequences of susceptibility and resistance in barley leaves challenged with powdery mildew. Plant Cell Environ 29:1061ā€“1076

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Takagi D, Takumi S, Hashiguchi M, Sejima T, Miyake C (2016) Superoxifde and singlet oxygen produced within the thylakoid membranes both causes photosystem I photoinhibition. Plant Physiol 171:1626ā€“1634

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Thomas SG, Phillips AL, Hedden P (1999) Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. PNAS, USA 96:4638ā€“4703

    Google ScholarĀ 

  • Tognetti VB et al (2010) Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell 22:2660ā€“2679

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Tsugane K, Kobayashi K, Niwa Y, Ohba Y, Wada K, Kobayashi H (1999) A recessive Arabidopsis mutant that grows enhanced active oxygen detoxification. Plant Cell 11:1195ā€“1206

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Tyler L, Thomas SG, Hu J, Dill A, Alonso JM, Ecker JR, Sun TP (2004) DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol 135:1008ā€“1019

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ueguchi-Tanaka M, Ashikari M, Nakajima M et al (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693ā€“698

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ueguchi-Tanaka M, Nakajima M, Motoyuki A, Matsuoka M (2007) Gibberellin receptor and its role in gibberellin signaling in plants. Annu Rev Plant Biol 58:183ā€“198

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Vainonen JP, Sakuragi Y, Stael S et al (2008) Light regulation of CaS, a novel phosphoprotein in the thylakoid membrane of Arabidopsis thaliana. FEBS J 275:1767ā€“1777

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Vanderauwera S, Suzuki N, Miller G, van de Cotte B, Morsa S, Ravanat L, Hegie A, Triantaphylides C, Shulaev V, Montagu MCEV, Breusegem FV, Mittler R (2011) Extranuclear protection of chromosomal DNA from oxidative stress. Proc Natl Acad Sci U S A 108:1711ā€“1716

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Volt AC et al (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177ā€“206

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wagner D, Przybyla D, op den Camp R et al (2004) The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science 306:1183ā€“1185

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wallace JS, Acreman MC, Sullivan CA (2003) The sharing of water between society and ecosystems: from conflict to catchmentā€“based coā€“ management. Philos Trans R Soc Lond Ser B Biol Sci 358:2011ā€“2026. https://doi.org/10.1098/rstb.2003.1383

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wang HY, Huang YC, Chen SF, Yeh KW (2003) Molecular cloning, characterization and gene expression of a water deficiency and chilling induced proteinase inhibitor I gene family from sweet potato (Ipomoea batatas Lam.) leaves. Plant Sci 165:191ā€“203

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wasternack C, Forner S, Strnad M, Hause B (2013) Jasmonates in flower and seed development. Biochimie 95:79ā€“85

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wen CK, Chang C (2002) Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. Plant Cell 14:87ā€“100

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Weston DE, Elliott RC, Lester DR, Rameau C, Reid JB, Murfet IC, Ross JJ (2008) The Pea DELLA proteins LA and CRY are important regulators of gibberellin synthesis and root growth. Plant Physiol 147:199ā€“205

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Willige BC, Ghosh S, Nill C, Zourelidou M, Dohmann EMN, Maier A, Schwechheimer C (2007) The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis. Plant Cell 19:1209ā€“1220

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Wilson RN, Heckman JW, Somerville CR (1992) Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol 100:403ā€“408

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Winston GW (1990) Free radicals in cells. In: Stress responses in plants: adaptations and acclimation mechanisms. Willy-Liss, p 57ā€“86

    Google ScholarĀ 

  • Woodson JD, Chory J (2008) Coordination of gene expression between organeller and nuclear genomes. Nat Rev Genet 9:383ā€“395

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225ā€“251

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yang Y, Ma J, Chen Y, Wu M (2004) Nucleocytoplasmic shuttling of receptor-interacting protein 3 (RIP3): identification of novel nuclear export and import signals in RIP3. J Biol Chem 279:38820ā€“38829

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yu H, Ito T, Zhao Y, Peng J, Kumar P, Meyerowitz EM (2004) Floral homeotic genes are targets of gibberellin signaling in flower development. PNAS, USA 101:7827ā€“7832

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song CP (2001) Hydrogen peroxide is involved in abscisic acid induced stomatal closure in Vicia faba. Plant Physiol 126:1438ā€“1448

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mudasir Gani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saini, P. et al. (2018). Reactive Oxygen Species (ROS): A Way to Stress Survival in Plants. In: Zargar, S., Zargar, M. (eds) Abiotic Stress-Mediated Sensing and Signaling in Plants: An Omics Perspective. Springer, Singapore. https://doi.org/10.1007/978-981-10-7479-0_4

Download citation

Publish with us

Policies and ethics