Skip to main content

Signaling Peptides: Hidden Molecular Messengers of Abiotic Stress Perception and Response in Plants

  • Chapter
  • First Online:

Abstract

Abiotic stress constitutes a threat to plant growth and development owing to undesired morphological, physiological, biochemical and molecular changes leading to yield losses and also restricting the areas where the crops can be grown. However, the sessile nature of plants allows them to swiftly recognize and respond to various adverse climatic conditions. This rapid response is primarily due to effective cell-to-cell communication through various intricate defence machineries that enable the plants to sense stress and relay the signal to downstream response regulators. Till a few decades back, phytohormones were considered the major players of cell-to-cell communication. However, following the discovery of first signaling peptide, systemin in tomato, there has been a paradigm shift in our understanding of the role of these peptides in signaling in plants. Genome-wide approaches using the tools of bioinformatics, genetic screens and biochemical assays have led to the discovery of several novel plant peptides over the few years. Small signaling/peptide hormones/secreted peptides are now established in plants as molecular messengers because of their involvement in key developmental processes such as meristem maintenance, organ abscission, cell elongation, cell proliferation and differentiation, gravitropism and defence against abiotic and biotic aggressors. A better understanding of these signaling molecules might steer us towards manipulating them for engineering hitherto elusive stress tolerance trait in plants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrash EB, Davies KA, Bergmann DC (2011) Generation of signaling specificity in Arabidopsis by spatially restricted buffering of ligand receptor interactions. Plant Cell 23:2864–2879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akker SEV, Lilley C, Yusup HB, Jones JT, Urwin PE (2016) Functional C-TERMINALLY ENCODED PEPTIDE (CEP) plant hormone domains evolved de novo in the plant parasite Rotylenchulus reniformis. Mol Plant Pathol 17(8):1265–1275

    Article  CAS  Google Scholar 

  • Akpinar B, Bihter A, Lucas SJ, Hikmet B (2012) Plant abiotic stress signaling. Plant Signal Behav 7:1450–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albert M (2013) Peptides as triggers of plant defence. J Exp Bot 64:5269–5279

    Article  CAS  PubMed  Google Scholar 

  • Amano Y, Tsubouchi H, Shinohara H, Ogawa M, Matsubayashi Y (2007) Tyrosine-sulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis. Proc Natl Acad Sci U S A 104:18333–18338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araya T, Miyamoto M, Wibowo J, Suzuki A, Kojima S et al (2014) CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen dependent manner. Proc Natl Acad Sci U S A 111:2029–2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asano T, Miwa A, Maeda K, Kimura M, Nishiuchi T (2013) The secreted antifungal protein thionin 2.4 in Arabidopsis thaliana suppresses the toxicity of a fungal fruit body lectin from Fusarium graminearum. PLoS Pathog 9:e1003581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson NJ, Lilley CJ, Urwin PE (2013) Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol 162:2028–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beers EP, Jones AM, Dickeman AW (2004) The S8 serine, C1A cysteine and A1 aspartic protease families in Arabidopsis. Phytochemistry 65:43–58

    Article  CAS  PubMed  Google Scholar 

  • Bergey DR, Howe GA, Ryan CA (1996) Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals. Proc Natl Acad Sci 93(22):12053–12058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya R, Koramutla MK, Negi M, Pearce G, Ryan CA (2013) Hydroxyproline-rich glycopeptide signals in potato elicit signalling associated with defense against insects and pathogens. Plant Sci 207:88–97

    Article  CAS  PubMed  Google Scholar 

  • Billington T, Pharmawati M, Gehring CA (1997) Isolation and immunoaffinity purification of biologically active plant natriuretic peptide. Biochem Biophys Res Commun 235:722–772

    Article  CAS  PubMed  Google Scholar 

  • Blanvillain R, Young B, Cai YM, Hecht V, Varoquaux F, Delorme V, Lancelin J-M, Delseny M, Gallois P (2011) The Arabidopsis peptide kiss of death is an inducer of programmed cell death. EMBO J 30:1173–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonello JF, Opsahl-Ferstad HG, Perez P, Dumas C, Rogowsky PM (2000) Esr genes show different levels of expression in the same region of maize endosperm. Gene 246:219–227

    Article  CAS  PubMed  Google Scholar 

  • Boudart G, Jamet E, Rossignol M, Lafitte C, Borderies G, Jauneau A, Esquerre-Tugaye M, Pont-Lezica R (2004) Cell wall proteins in apoplastic fluids of Arabidopsis thaliana rosettes: identification by mass spectrometry and bioinformatics. Proteomics 5:212–221

    Article  CAS  Google Scholar 

  • Breitenbach HH, Wenig M, Wittek F, Jorda L, Maldonado-Alconada AM, Sarioglu H, Colby T, Knappe C, Bichlmeier M, Pabst E, Mackey D, Parker JE, Vlot AC (2014) Contrasting roles of the apoplastic aspartyl protease apoplastic, enhanced disease susceptibility1- dependent1 and legume lectin-like protein1 in arabidopsis systemic acquired resistance. Plant Physiol 165(2):791–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butenko MA, Patterson SE, Grini PE, Stenvik GE, Amundsen SS et al (2003) Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. Plant Cell 15:2296–2307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao J, Shi F (2012) Evolution of the RALF gene family in plants: gene duplication and selection patterns. Evol Bioinforma 8:271–292

    Article  CAS  Google Scholar 

  • Casson SA, Paul MC, Jennifer FT, Marta E, Martin AS, Keith L (2002) The POLARIS gene of Arabidopsis encodes a predicted peptide required for correct root growth and leaf vascular patterning. Plant Cell 14:1705–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YC, Siems WF, Pearce G, Ryan CA (2008) Six peptide wound signals derived from a single precursor protein in Ipomoea batatas leaves activate the expression of the defense gene sporamin. J Biol Chem 283:11469–11476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y-L, Lee C-Y, Cheng K-T, Chang W-H, Huang R-N, Nam HG, Chen Y-R (2014) Quantitative peptidomics study reveals that a wound-induced peptide from PR-1 regulates immune signaling in tomato. Plant Cell 26:4135–4148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevalier E, Hudon AL, Matton DP (2013) ScRALF3, a secreted RALF-like peptide involved in cell-cell communication between the sporophyte and the female gametophyte in a solanaceous species. Plant J 73:1019–1033

    Article  CAS  PubMed  Google Scholar 

  • Chien P-S, Nam HG, Chen Y-R (2015) A salt-regulated peptide derived from the CAP superfamily protein negatively regulates salt-stress tolerance in Arabidopsis. J Exp Bot. pii: erv263 66:5301–5313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chilley PM, Casson SA, Tarkowski P, Hawkins N, Wang KL-C, Hussey PJ, Beale M, Ecker JR, Sandberg GK, Lindsey K (2006) The POLARIS peptide of Arabidopsis regulates auxin transport and root growth via effects on ethylene signaling. Plant Cell 18:3058–3072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chouabe C, Eyraud V, Da Silva P, Rahioui I, Royer C, Soulage C, Bonvallet R, Huss M, Gressent F (2011) New mode of action for a knottin protein bioinsecticide: pea albumin 1 subunit b (PA1b) is the first peptidic inhibitor of V-ATPase. J Biol Chem 286:36291–36296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cock JM, McCormick S (2001) A large family of genes that share homology with CLAVATA3. Plant Physiol 126(3):939–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Combier JP, Kuster H, Journet EP, Hohnjec N, Gamas P, Niebel A (2008) Evidence for the involvement in nodulation of the two small putative regulatory peptide-encoding genes MtRALFL1 and MtDVL1. Mol Plant-Microbe Interact 21:1118–1127

    Article  CAS  PubMed  Google Scholar 

  • Constabel CP, Bergey DR, Ryan CA (1995) Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Proc Natl Acad Sci 92(2):407–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa LM, Marshall E, Tesfaye M, Silverstein KA, Mori M (2014) Central cell-derived peptides regulate early embryo patterning in flowering plants. Science 344:168–172

    Article  CAS  PubMed  Google Scholar 

  • Covey PA, Subbaiah CC, Parsons RL, Pearce G, Lay FT, Anderson MA, Ryan CA, Bedinger PA (2010) A pollen-specific RALF from tomato that regulates pollen tube elongation. Plant Physiol 153:703–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowan WM (2001) Viktor Hamburger and Rita Levi-Montalcini: the path to the discovery of nerve growth factor. Ann Rev Neurosci 24(1):551–600

    Article  CAS  PubMed  Google Scholar 

  • Craik DJ, Daly NL, Bond T, Waine C (1999) Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J Mol Biol 294:1327–1336

    Article  CAS  PubMed  Google Scholar 

  • Delay C, Imin N, Djordjevic MA (2013) CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants. J Exp Bot 64(17):5383–5394

    Article  CAS  PubMed  Google Scholar 

  • DeYoung BJ, Clark SE (2008) BAM receptors regulate stem cell specification and organ development through complex interactions with CLAVATA signaling. Genetics 180:895–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doheny-Adams T, Hunt L, Franks PJ, Beerling DJ, Gray JE (2012) Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Philos Trans Royal Soc Lond B: Biol Sci 367(1588):547–555

    Article  CAS  Google Scholar 

  • Dombrowski JE (2003) Salt stress activation of wound-related genes in tomato plants. Plant Physiol 132(4):2098–2107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donaldson L, Ludidi N, Knight MR, Gehring C, Denby K (2004) Salt and osmotic stress cause rapid increases in Arabidopsis thaliana cGMP levels. FEBS Lett 569:317–320. during stomatal development. Current Biology 19(10): 864–869

    Article  CAS  PubMed  Google Scholar 

  • Durgo H, Klement E, Hunyadi-Gulyas E, Szucs A, Kereszt A, Medzihradszky KF, Kondorosi E (2015) Identification of nodule-specific cysteine-rich plant peptides in endosymbiotic bacteria. Proteomics 15:2291–2295

    Article  CAS  PubMed  Google Scholar 

  • de Souza Cândido E, e Silva Cardoso MH, Sousa DA, Viana JC, de Oliveira-Júnior NG, Miranda V, Franco OL (2014) The use of versatile plant antimicrobial peptides in agribusiness and human health. Peptides 55:65–78

    Article  PubMed  CAS  Google Scholar 

  • Farkas A, Maróti G, Durgő H, Györgypál Z, Lima RM, Medzihradszky KF, Kereszt A, Mergaert P, Kondorosi É (2014) Medicago truncatula symbiotic peptide NCR247 contributes to bacteroid differentiation through multiple mechanisms. Proc Natl Acad Sci U S A 111:5183–5188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez A, Drozdzecki A, Hoogewijs K, Nguyen A, Beeckman T, Madder A, Hilson P (2013) Transcriptional and functional classification of the GOLVEN/ROOT GROWTH FACTOR/CLE-like signaling peptides reveals their role in lateral root and hair formation. Plant Physiol 161:954–970

    Article  CAS  PubMed  Google Scholar 

  • Fernandez A, Drozdzecki A, Hoogewijs K, Vassileva V, Madder A, Beeckman T, Hilson P (2015) The GLV6/RGF8/CLEL2 peptide regulates early pericycle divisions during lateral root initiation. J Exp Bot 66(17):5245–5256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM (1999) Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283:1119

    Article  Google Scholar 

  • Flury P, Klauser D, Schulze B, Boller T, Bartels S (2013) The anticipation of danger: microbe-associated molecular pattern perception enhances AtPep-triggered oxidative burst. Plant Physiol 161(4):2023–2035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García AN, Ayub ND, Fox AR, Gómez MC, Diéguez MJ, Pagano EM, Berini CA, Muschietti JP, Soto G (2014) Alfalfa snakin-1 prevents fungal colonization and probably coevolved with rhizobia. BMC Plant Biol 14:248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaspar YM, McKenna JA, McGinness BS, Hinch J, Poon S, Connelly AA, Anderson MA, Heath RL (2014) Field resistance to Fusarium oxysporum and Verticillium dahliae in transgenic cotton expressing the plant defensin NaD1. J Exp Bot 65:1541–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gehring CA, Irving HR (2003) Natriuretic peptides – a class of heterologous molecules in plants. Int J Biochem Cell Biol 35:1318–1322

    Article  CAS  PubMed  Google Scholar 

  • Ghorbani S, Fernandez A, Hilson P, Beeckman T (2014) Signaling peptides in plants. Cell Dev Biol 3:2

    Article  CAS  Google Scholar 

  • Goyal RK, Mattoo AK (2014) Multitasking antimicrobial peptides in plant development and host defense against biotic/abiotic stress. Plant Sci 228:135–149

    Article  CAS  PubMed  Google Scholar 

  • Gray-Mitsumune M, Matton DP (2006) The egg apparatus 1 gene from maize is a member of a large gene family found in both monocots and dicots. Planta 223:618–625

    Article  CAS  PubMed  Google Scholar 

  • Green TR, Ryan CA (1972) Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175(4023):776–777

    Article  CAS  PubMed  Google Scholar 

  • Gully K, Hander T, Boller T, Bartels S (2015) Perception of Arabidopsis AtPep peptides, but not bacterial elicitors, accelerates starvation-induced senescence. Front Plant Sci 6:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Gultyaev AP, Roussis A (2007) Identification of conserved secondary structures and expansion segments in enod40 RNAs reveals new enod40 homologues in plants. Nucleic Acids Res 35:3144–3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo P, Yoshimura A, Ishikawa N et al (2015) Comparative analysis of the RTFL peptide family on the control of plant organogenesis. J Plant Res 128:497–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanada K, Zhang X, Borevitz JO, Li WH, Shiu SH (2007) A large number of novel coding small open reading frames in the intergenic regions of the Arabidopsis thaliana genome are transcribed and/or under purifying selection. Genome Res 17:632–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara K, Kajita R, Torii KU, Bergmann DC, Kakimoto T (2007) The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule. Genes Dev 21:1720–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara K, Yokoo T, Kajita R, Onishi T, Yahata S (2009) Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves. Plant Cell Physiol 50:1019–1031

    Article  CAS  PubMed  Google Scholar 

  • Haruta M, Constabel CP (2003) Rapid alkalinization factors in poplar cell cultures. Peptide isolation, cDNA cloning, and differential expression in leaves and methyl jasmonate treated cells. Plant Physiol 131:814–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR (2014) A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343(6169):408–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higashiyama T (2010) Peptide signaling in pollen-pistil interactions. Plant Cell Physiol 51:177–189

    Article  CAS  PubMed  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post genome era: past, present and future. Plant J 61:1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Holley SR, Yalamanchili RD, Moura DS, Ryan CA, Stratmann JW (2003) Convergence of signaling pathways induced by systemin, oligosaccharide elicitors, and ultraviolet-B radiation at the level of mitogen-activated protein kinases in Lycopersicon peruvianum suspension-cultured cells. Plant Physiol 132:1728–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huffaker A, Pearce G, Ryan CA (2006) An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc Natl AcadSci USA 103:10098–10103

    Article  CAS  Google Scholar 

  • Hunt L, Gray JE (2009) The signaling peptide EPF2 controls asymmetric cell divisions during stomatal development. CurrBiol 19:864–869. 73

    Article  CAS  Google Scholar 

  • Hunt L, Bailey KJ, Gray JE (2010) The signalling peptide EPFL9 is a positive regulator of stomatal development. New Phytol 186:609–614. 74

    Article  CAS  PubMed  Google Scholar 

  • Ikeuchi M, Yamaguchi Y, Kazama T, Ito T, Horiguchi G, Tsukaya H (2011) ROTUNDIFOLIA4 regulates cell proliferation along the body axis in Arabidopsis shoot. Plant Cell Physiol 52:59–69

    Article  CAS  PubMed  Google Scholar 

  • Ingram G, Gutierrez-Marcos J (2015) Peptide signaling during angiosperm seed development. J Exp Bot 66(17):5151–5159

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H (2006) Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313:842–845

    Article  CAS  PubMed  Google Scholar 

  • Jeong S, Trotochaud AE, Clark SE (1999) The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell 11:1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji H, Gheysen G, Ullah C, Verbeek R, Shang C, De Vleesschauwer D, Höfte M, Kyndt T (2015) The role of thionins in rice defence against root pathogens. Mol Plant Pathol. in press

    Google Scholar 

  • Jinn TL, Stone JM, Walker JC (2000) HAESA, an Arabidopsis leucine rich repeat receptor kinase, controls floral organ abscission. Genes Dev 14:108–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katsir L, Davies KA, Bergmann DC, Laux T (2011) Peptide signaling in plant development. Curr Biol 21(9):356–364

    Article  CAS  Google Scholar 

  • Kohorn BD (1999) Shuffling the deck: plant signalling plays a club. Trends Cell Biol 9:381

    Article  CAS  PubMed  Google Scholar 

  • Kondo T, Sawa S, Kinoshita A, Mizuno S, Kakimoto T, Fukuda H, Sakagami Y (2006) A plant peptide encoded by CLV3 identified by in situ MALDI-TOF MS analysis. Science 313:845–848

    Article  CAS  PubMed  Google Scholar 

  • Kumpf RP, Shi CL, Larrieu A, Stø IM, Butenko MA (2013) Floral organ abscission peptide IDA and its HAE/HSL2 receptors control cell separation during lateral root emergence. Proc Natl Acad Sci U S A 110:5235–5240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kutschmar A, Rzewuski G, Stuhrwohldt N, GTS B, Inze D, Sauter M (2009) PSK-a promotes root growth in Arabidopsis. New Phytol 181:820–831

    Article  CAS  PubMed  Google Scholar 

  • Kwezi L, Ruzvidzo O, Wheeler JI, Govender K, Iacuone S, Thopson PE, Gehring C, Irving HR (2011) The phytosulfokine (PSK) receptor is capable of guanylate cyclase activity and enabling cyclic GMP-dependent signalling in plants. J BiolChem 286:22580–22588

    CAS  Google Scholar 

  • Lee DG, Shin SY, Kim DH, Seo MY, Kang JH, Lee Y, Kim KL, Hahm KS (1999) Antifungal mechanism of a cysteine-rich antimicrobial peptide, Ib-AMP1, from impatiens balsamina against Candida albicans. Biotechnol Lett 21:1047–1050

    Article  CAS  Google Scholar 

  • Lee JS, Kuroha T, Hnilova M, Khatayevich D, Kanaoka MM (2012) Direct interaction of ligand-receptor pairs specifying stomatal patterning. Genes Dev 26:126–136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lindsey K, Casson S, Chilley P (2002) Peptides: new signalling molecules in plants. Trends Plant Sci 7:78–83

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Wu Y, Yang F, Zhang Y, Chen S, Xie Q, Tian X, Zhou JM (2013) BIK1 interacts with PEPRs to mediate ethylene-induced immunity. PNAS USA 110:6205–6210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorbiecke R, Sauter M (2002) Comparative analysis of PSK peptide growth factor precursor homologs. Plant Sci 163:321–332

    Article  CAS  Google Scholar 

  • Ludidi NN, Heazlewood JL, Seoighe C, Irving HR, Gehring CA (2002) Expansin-like molecules: novel functions derived from common domains. J Mol Evol 54:587–594

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Yoshioka K, Gehring C, Berkowitz G (2010) The function of cyclic nucleotide-gated channels in biotic stress. In: Demidchik V, Maathuis F (eds) Ion channels and plant stress responses, signaling and communication in plants. Springer, Berlin, pp 159–174

    Chapter  Google Scholar 

  • Maathuis FJ (2006) cGMP modulates gene transcription and cation transport in Arabidopsis roots. Plant J 45:700–711

    Article  CAS  PubMed  Google Scholar 

  • Márton ML, Fastner A, Uebler S, Dresselhaus T (2012) Overcoming hybridization barriers by the secretion of the maize pollen tube attractant ZmEA1 from Arabidopsis ovules. Curr Biol 22:1194–1198

    Article  PubMed  CAS  Google Scholar 

  • Maryani MM, Bradley G, Cahill DM, Gehring CA (2001) Natriuretic peptides and immunoreactants modify osmoticum-dependent volume changes in Solanum tuberosum L. mesophyll cell protoplasts. Plant Sci 161:443–452

    Article  CAS  Google Scholar 

  • Matos JL, Fiori CS, Silva-Filho MC, Moura DS (2008) A conserved dibasic site is essential for correct processing of the peptide hormone AtRALF1 in Arabidopsis thaliana. FEBS 582:3343–3347

    Article  CAS  Google Scholar 

  • Matsubayashi Y (2011) Small post-translationally modified peptide signals in Arabidopsis. Arabidopsis Book/Am Soc Plant Biol 9:e0150

    Google Scholar 

  • Matsubayashi Y (2014) Posttranslationally modified small-peptide signals in plants. Ann Rev Plant Biol 65:385–413

    Article  CAS  Google Scholar 

  • Matsubayashi Y, Sakagami Y (1996) Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L. Proc Natl Acad Sci 93(15):7623–7627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsubayashi Y, Takagi L, Sakagami Y (1997) Phytosulfokine-alpha, a sulfated pentapeptide, stimulates the proliferation of rice cells by means of specific high- and low-affinity binding sites. Proc Natl Acad Sci U S A 94:13357–13362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsubayashi Y, Takagi L, Omura N, Morita A, Sakagami Y (1999) The endogenous sulfated pentapeptide phytosulfokine-α stimulates tracheary element differentiation of isolated mesophyll cells of Zinnia. Plant Physiol 120(4):1043–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsubayashi Y, Ogawa M, Morita A, Sakagami Y (2002) An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine. Science 296:1470–1472

    Article  CAS  PubMed  Google Scholar 

  • Matsubayashi Y, Ogawa M, Kihara H, Niwa M, Sakagami Y (2006) Disruption and overexpression of Arabidopsis phytosulfokine receptor gene affects cellular longevity and potential for growth. Plant Physiol 142:45–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuzaki Y, Ogawa-Ohnishi M, Mori A, Matsubayashi Y (2010) Secreted peptide signals required for maintenance of root stem cell niche in Arabidopsis. Science 329:1065–1067

    Article  CAS  PubMed  Google Scholar 

  • Meier S, Madeo L, Ederli L, Donaldson L, Pasqualini S, Gehring C (2009) Deciphering cGMP signatures and cGMP-dependent pathways in plant defence. Plant Signal Behav 4:307–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meier S, Ruzvidzo O, Morse M, Donaldson L, Kwezi L, Gehring C (2010) The Arabidopsis wall associated kinase-like 10 gene encodes a functional guanylyl cyclase and is co-expressed with pathogen defense related genes. PLoS One 5:e8904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meng L, Buchanan BB, Feldman LJ, Luan S (2012) CLE-like (CLEL) peptides control the pattern of root growth and lateral root development in Arabidopsis. Proc Natl Acad Sci, USA 109:1760–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morato do Canto A, Ceciliato PH, Ribeiro B, MFA O, GAA F, Silva-Filho MC, Moura DS (2014)Biological activity of nine recombinant AtRALF peptides: implications for their perception and function in Arabidopsis. Plant Physiol Biochem 75:45–54

    Google Scholar 

  • Mosher S, Kemmerling B (2013) PSKR1 and PSY1R-mediated regulation of plant defense responses. Plant Signal Behav 8:e24119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Motose H, Iwamoto K, Endo S, Demura T, Sakagami Y, Matsubayashi Y, Moore KL, Fukuda H (2009) Involvement of phytosulfokine in the attenuation of stress response during the transdifferentiation of Zinnia mesophyll cells into tracheary elements. Plant Physiol 150:437–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mudge A (2016) The role of the POLARIS peptide in ethylene signalling and root development in Arabidopsis thaliana. Durham e-Theses (http://etheses.dur.ac.uk/11473)

  • Murphy E (2016) Characterising signalling components mediating root architecture in Arabidopsis thaliana. Nottingham e-Theses (http://eprints.nottingham.ac.uk/31976)

  • Murphy E, Smith S, De Smet I (2012) Small signaling peptides in Arabidopsis development: how cells communicate over a short distance. Plant Cell 24:3198–3217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy E, Vu LD, Van den Broeck L (2016) RALFL34 regulates formative cell divisions in Arabidopsis pericycle during lateral root initiation. J Exp Bot 67:4863–4875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nahirñak V, Almasia NI, Hopp HE, Vazquez-Rovere C (2012) Snakin/GASA proteins: involvement in hormone crosstalk and redox homeostasis. Plant Signal Behav 7:1004–1008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Narita NN, Moore S, Horiguchi G, Kubo M, Demura T, Fukuda H (2004) Overexpression of a novel small peptide ROTUNDIFOLIA4 decreases cell proliferation and alters leaf shape in Arabidopsis thaliana. Plant J 38:699–713

    Article  CAS  PubMed  Google Scholar 

  • Narváez-Vásquez J, Orozco-Cárdenas ML (2008) Systemins and at peps: defense-related peptide signals. Induced plant resistance to herbivory. p 313

    Google Scholar 

  • Nawrot R, Barylski J, Nowicki G, Broniarczyk J, Buchwald W, Gozdzicka-Józefiak A (2014) Plant antimicrobial peptides. Folia Microbiol (Praha) 59:181–196

    Article  CAS  Google Scholar 

  • Neukermans J, Inzé A, Mathys J, De Coninck B, van de Cotte B, Cammue BPA, Van Breusegem F (2015) ARACINs, Brassicaceae-specific peptides exhibiting antifungal activities against necrotrophic pathogens in Arabidopsis. Plant Physiol 167:1017–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni J, Clark SE (2006) Evidence for functional conservation, sufficiency and proteolytic processing of the CLAVATA3 CLE domain. Plant Physiol 140:726–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohki S, Takeuchi M, Mori M (2011) The NMR structure of stomagen reveals the basis of stomatal density regulation by plant peptide. Nat Commun 12:373–386

    Google Scholar 

  • Ohyama K, Ogawa M, Matasubayashi Y (2008) Identification of a biologically active, small, secreted peptide in Arabidopsis by in silico gene screening, followed by LC-MS-based structure analysis. Plant J 55:152–160

    Article  CAS  PubMed  Google Scholar 

  • Ohyama K, Shinohara H, Ogawa-Ohnishi M, Matsubayashi Y (2009) A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nat Chem Biol 5(8):578–580

    Article  CAS  PubMed  Google Scholar 

  • Okuda S, Tsutsui H, Shiina K, Sprunck S, Takeuchi H, Yui R, Higashiyama T et al (2009) Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458(7236):357–361

    Article  CAS  PubMed  Google Scholar 

  • Olsen AN, Mundy J, Skriver K (2002) Peptomics, identification of novel cationic Arabidopsis peptides with conserved sequence motifs. In Silico Biol 2:441–451

    CAS  PubMed  Google Scholar 

  • Onrubia M, Pollier J, Van den Bossche R, Goethals M, Gevaert K, Moyano E, Vidal-Limon H, Cusidó RM, Palazón J, Goossens A (2014) Taximin, a conserved plant-specific peptide is involved in the modulation of plant-specialized metabolism. Plant Biotechnol J 12:971–983

    Article  CAS  PubMed  Google Scholar 

  • Opsahl-Ferstad HG, LeDeunff E, Dumas C, Rogowsky PM (1997) ZmEsr, a novel endosperm-specific gene expressed in a restricted region around the maize embryo. Plant J 12(1):235–246

    Article  CAS  PubMed  Google Scholar 

  • Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253(5022):895–899

    Article  CAS  PubMed  Google Scholar 

  • Pearce G, Johnson S, Ryan CA (1993) Structure-activity of deleted and substituted systemin, an 18-amino acid polypeptide inducer of plant defensive genes. J Biol Chem 268:212–216

    CAS  PubMed  Google Scholar 

  • Pearce G, Moura DS, Stratmann J, Ryan CA (2001a) RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. Proc Natl Acad Sci U S A 98:12843–12847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearce G, Moura DS, Stratmann J, Ryan CA (2001b) Production of multiple plant hormones from a single polyprotein precursor. Nature 411:817–820

    Article  CAS  PubMed  Google Scholar 

  • Pearce G, Yamaguchi Y, Barona G, Ryan CA (2010) A subtilisin-like protein from soybean contains an embedded, cryptic signal that activates defense-related genes. Proc Natl Acad Sci 107(33):14921–14925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearce G, Yamaguchi Y, Munske G, Ryan CA (2008) Structure-activity studies of AtPep1, a plant peptide signal involved in the innate immune response. Peptides 29:2083–2089

    Article  CAS  PubMed  Google Scholar 

  • Qi Z, Verma R, Gehring C, Yamaquchi Y, Zhao Y, Ryan CA, Berkowitz GA (2010) Ca2+ signaling by plant Arabidopsis thaliana pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels. PNAS 107:21193–21198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 52:1569–1582

    Article  CAS  PubMed  Google Scholar 

  • Rafudeen S, Gxaba G, Makgoke G, Bradley G, Pironcheva G, Raitt L, Irving H, Gehring C (2003) A role for plant natriuretic peptide immuno-analogues in NaCl- and drought-stress responses. Physiol Plant 119:554–562

    Article  CAS  Google Scholar 

  • Ren F, Lu YT (2006) Overexpression of tobacco hydroxyproline-rich glycopeptides systemin precursor A gene in transgenic tobacco enhances resistance against Helicoverpa armigera larvae. Plant Sci 171(2):286–292

    Article  CAS  Google Scholar 

  • Rohrig H, Schmidt J, Miklashevichs E, Schell J, John M (2002) Soybean ENOD40 encodes two peptides that bind to sucrose synthase. Proc Natl Acad Sci U S A 99:1915–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross A, Yamada K, Hiruma K, Yamashita-Yamada M, Lu X, Takano Y, Tsuda K, Saijo Y (2014) The Arabidopsis PEPR pathway couples local and systemic plant immunity. EMBO J 33:62–75

    Article  CAS  PubMed  Google Scholar 

  • Rowe MH, Bergmann DC (2010) Complex signals for simple cells: the expanding ranks of signals and receptors guiding stomatal development. Curr Opin Plant Biol 13:548–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan CA, Pearce G (1998) Systemin: a polypeptide signal for plant defensive genes. Ann Rev Cell Dev Biol 14:1–17

    Article  CAS  Google Scholar 

  • Ryan CA, Pearce G (2003) Systemins: a functionally defined family of peptide signals that regulate defensive genes in Solanaceae species. Proc Natl Acad Sci U S A 2:14577–14580

    Article  CAS  Google Scholar 

  • Sauter M (2015) Phytosulfokine peptide signalling. J Exp Bot 66(17):5161–5169

    Article  CAS  PubMed  Google Scholar 

  • Schmelz EA, Carroll MJ, LeClere S, Phipps SM, Meredith J, Chourey PS, Alborn HT, Teal PEA (2006) Fragments of ATP synthase mediate plant perception of insect attack. Proc Natl Acad Sci U S A 103:8894–8899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmelz EA, Huffaker A, Carroll MJ, Alborn HT, Ali JG, Teal PEA (2012) An amino acid substitution inhibits specialist herbivore production of an antagonist effector and recovers insect-induced plant defenses. Plant Physiol 160:1468–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schopfer CR, Nasrallah ME, Nasrallah JB (1999) The male determinant of self-incompatibility in Brassica. Science 286:1697–1700

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Hussain A et al (2016) Comprehensive analysis of plant rapid alkalization factor (RALF) genes. Plant Physiol Biochem 106:82–90

    Article  CAS  PubMed  Google Scholar 

  • Shimada T, Sugano SS, Hara-Nishimura I (2011) Positive and negative peptide signals control stomatal density. Cell Mol Life Sci 68:2081–2088

    Article  CAS  PubMed  Google Scholar 

  • Shpak ED, McAbee JM, Pillitteri LJ, Torii KU (2005) Stomatal patterning and differentiation by synergistic interactions of receptor kinases. Science 309:290–293

    Article  CAS  PubMed  Google Scholar 

  • Silverstein KAT, Moskal WJ Jr, Wu HC, Underwood BA, Graham MA, Town CD, VandenBosch KA (2007) Small cysteine-rich peptides resembling antimicrobial peptides have been underpredicted in plants. Plant J 51:262–280

    Article  CAS  PubMed  Google Scholar 

  • Slavokhotova AA, Rogozhin EA, Musolyamov AK, Andreev YA, Oparin PB, Berkut AA, Vassilevski AA, Egorov TA, Grishin EV, Odintsova TI (2014) Novel antifungal a-hairpinin peptide from Stellaria media seeds: structure, biosynthesis, gene structure and evolution. Plant Mol Biol 84:189–202

    Article  CAS  PubMed  Google Scholar 

  • Spincemaille P, Chandhok G, Newcomb B, Verbeek J, Vriens K, Zibert A, Schmidt H, Hannun YA, van Pelt J, Cassiman D, Cammue BP, Thevissen K (2014a) The plant decapeptide OSIP108 prevents copper-induced apoptosis in yeast and human cells. Biochim Biophys Acta 1843:1207–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spincemaille P, Pham DH, Chandhok G, Verbeek J, Zibert A, Libbrecht L, Schmidt H, Esguerra CV, de Witte PAM, Cammue BPA, Cassiman D, Thevissen K (2014b) The plant decapeptide OSIP108 prevents copper-induced toxicity in various models for Wilson disease. Toxicol Appl Pharmacol 280:345–351

    Article  CAS  PubMed  Google Scholar 

  • Stenvik GE, Butenko MA, Urbanowicz BR, Rose JK, Aalen RB (2006) Overexpression of INFLORESCENCE DEFICIENT IN ABSCISSION activates cell separation in vestigial abscission zones in Arabidopsis. Plant Cell 18:1467–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stenvik GE, Tandstad NM, Guo Y, Shi CL, Kristiansen W (2008) The EPIP peptide of INFLORESCENCE DEFICIENT IN ABSCISSION is sufficient to induce abscission in arabidopsis through the receptor-like kinases HAESA and HAESA-LIKE2. Plant Cell 20:1805–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugano SS, Shimada T, Imai Y, Okawa K, Tamai A et al (2010) Stomagen positively regulates stomatal density in Arabidopsis. Nature 463:241–244

    Article  CAS  PubMed  Google Scholar 

  • Sui Z, Wang T, Li H, Zhang M et al (2016) Overexpression of peptide-encoding OsCEP6.1 results in pleiotropic effects on growth in rice (O. sativa). Front Plant Sci 7:228

    Article  PubMed  PubMed Central  Google Scholar 

  • Suwastika IN, Gehring CA (1998) Natriuretic peptide hormones promote radial water movements from the xylem of Tradescantia shoots. Cell Mol Life Sci CMLS 54(10):1161–1167

    Article  CAS  Google Scholar 

  • Tabata R, Sawa S (2014) Maturation processes and structures of small secreted peptides in plants. Plant Prot 5:311

    Google Scholar 

  • Takayama S, Shiba H, Iwano M, Shimosato H, Che FS, Kai N, Watanabe M, Suzuki G, Hinata K, Isogai A (2000) The pollen determinant of self-incompatibility in Brassica campestris. Proc Natl Acad Sci U S A 97:1920–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takayama S, Shimosato H, Shiba H, Funato M, Che FS, Watanabe M, Isogai A (2001) Direct ligand-receptor complex interaction controls Brassica self-incompatibility. Nature 413(6855):534–538

    Article  CAS  PubMed  Google Scholar 

  • Tavormina P, Coninck BD, Nikonorova N, Smet ID, Cammue BPA (2015) The plant peptidome: an expanding repertoire of structural features and biological functions. Plant Cell 13:1820–1845

    Google Scholar 

  • Tintor N, Ross A, Kanehara K, Yamada K, Fan L, Kemmerling B, Nurnberger T, Tsuda K, Saijo Y (2013) Layered pattern receptor signaling via ethylene and endogenous elicitor peptides during Arabidopsis immunity to bacterial infection. PNAS USA 110(15):6211–6216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Topping JF, Lindsey K (1997) Promoter trap markers differentiate structural and positional components of polar development in Arabidopsis. Plant Cell 9(10):1713–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trotochaud AE, Hao T, Wu G, Yang Z, Clark SE (1999) The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a rho-related protein. Plant Cell 11:393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida N, Tasaka M (2013) Regulation of plant vascular stem cells by endodermis-derived EPFL-family peptide hormones and phloem expressed ERECTA-family receptor kinases. J Exp Bot 64:5335–5343

    Article  CAS  PubMed  Google Scholar 

  • Uchida N, Lee JS, Horst RJ, Lai HH, Kajita R et al (2012) Regulation of inflorescence architecture by inter tissue layer ligand-receptor communication between endodermis and phloem. Proc Natl Acad Sci USA 109:6337–6342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Weerden NL, Anderson MA (2013) Plant defensins: common fold, multiple functions. Fungal Biol Rev 26:121–131

    Article  Google Scholar 

  • van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Ann Rev Phytopathol 44:135–162

    Article  CAS  Google Scholar 

  • Vesely DL, Giordano AT (1991) Atrial natriuretic peptide hormonal system in plants. Biochem Biophys Res Commun 179:695–700

    Article  CAS  PubMed  Google Scholar 

  • Vie AK, Najafi J (2015) The IDA/IDA-LIKE and PIP/PIP-LIKE gene families in Arabidopsis: phylogenetic relationship, expression patterns, and transcriptional effect of the PIPL3 peptide. J Exp Bot 66(17):5351–5365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YH, Irving HR (2011) Developing a model of plant hormone interactions. Plant Signal Behav 6:494–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YH, Gehring C, Cahill DM, Irving HR (2007) Plant natriuretic peptide active site determination and effects on cGMP and cell volume regulation. Funct Plant Biol 34:645–653

    Article  CAS  Google Scholar 

  • Weidmann J, Craik DJ (2016) Discovery, structure, function, and applications of cyclotides: circular proteins from plants. J Exp Bot 124:215–227

    Google Scholar 

  • Wen J, Walker J (2006) DVL peptides are involved in plant development. In: Abba JK (ed) Handbook of biologically active peptides. Academic Press, Burlington, pp 17–22

    Chapter  Google Scholar 

  • Wen J, Lease KA, Walker JC (2004) DVL, a novel class of small polypeptides: overexpression alters Arabidopsis development. Plant J 37:668–677

    Article  CAS  PubMed  Google Scholar 

  • Whitford R, Fernandez A, Tejos R, Perez AC, Kleine-Vehn J et al (2012) GOLVEN secretory peptides regulate auxin carrier turnover during plant gravitropic responses. Dev Cell 22:678–685

    Article  CAS  PubMed  Google Scholar 

  • Wrzaczek M, Vainonen JP, Stael S, Tsiatsiani L, Gauthier A, Kaufholdt D, Bollhoner B, Lamminmaki A (2015) GRIM REAPER peptide binds to receptor kinase PRK5 to trigger cell death in Arabidopsis. EMBO J 34:55–66

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Kurten EL, Monshausen G, Hummel GM, Gilroy S, Baldwin IT (2007) NaRALF, a peptide signal essential for the regulation of root hair tip apoplastic pH in Nicotiana attenuata, is required for root hair development and plant growth in native soils. Plant J 52:877–890

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Huffaker A (2011) Endogenous peptide elicitors in higher plants. Curr Opin Plant Biol 14:351–357

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Ikeuchi M, Tsukaya H (2013) ROTUNDIFOLIA4. In: Kastin AJ (ed) Handbook of biologically active peptides, 2nd edn. Elsevier, San Diego, pp 53–57

    Chapter  Google Scholar 

  • Yang H, Matsubayashi Y, Nakamura K, Sakagami Y (1999) Oryza sativa PSK gene encodes a precursor of phytosulfokine-alpha, a sulfated peptide growth factor found in plants. Proc Natl Acad Sci USA 96:13560–13565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Matsubayashi Y, Nakamura K, Sakagami Y (2001) Diversity of Arabidopsis genes encoding precursors for phytosulfokine, a peptide growth factor. Plant Physiol 127:842–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SL, Xie LF, Mao HZ, Puah CS, Yang WC (2003) Tapetum determinant1 is required for cell specialization in the Arabidopsis anther. Plant Cell 15:2792–2804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumita Kumari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sudan, J., Sharma, D., Mustafiz, A., Kumari, S. (2018). Signaling Peptides: Hidden Molecular Messengers of Abiotic Stress Perception and Response in Plants. In: Zargar, S., Zargar, M. (eds) Abiotic Stress-Mediated Sensing and Signaling in Plants: An Omics Perspective. Springer, Singapore. https://doi.org/10.1007/978-981-10-7479-0_3

Download citation

Publish with us

Policies and ethics