Skip to main content

Signalling During Cold Stress and Its Interplay with Transcriptional Regulation

  • Chapter
  • First Online:
Abiotic Stress-Mediated Sensing and Signaling in Plants: An Omics Perspective

Abstract

World population (7.4 billion) is rapidly increasing (1.11% per year) and is projected to reach more than nine billion by 2050. Conversely, increase in crop yield and productivity is declining because of deleterious environmental effects including abiotic stresses (cold, salinity and drought). As a result, a major area of concern throughout the world is to minimize the losses caused by these stresses to cope up with increasing food necessity. Particularly, low temperature stress (freezing and cold) overall leads to a mechanical constraint on cellular membrane. Cold acclimation requires accurate sensing, signalling and regulation of the transcriptional cascade. Cold stress signals are sensed by change in membrane fluidity, Ca2+ channels and several kinases and phospholipases and also by photosynthetic apparatus. Afterwards, cytosolic Ca2+ concentration increases, and this Ca2+ influx is identified by Ca2+ sensor (calmodulin and calcineurin B-like proteins) and Ca2+ responder proteins (CDPKs and CIPKs). Signal is then conversed downstream to induce the activity of C-repeat binding factors (CBFs) and hence COR gene expression. A MYC (myelocytomatosis)-type bHLH TF (basic helix-loop-helix transcription factor) activator of CBF expression 1 (ICE1) controls expression of CBFs. Cold acclimation is perceived in CBF-dependent or CBF-independent way, which regulates different set of TFs. In this chapter, we will emphasize on cold stress, its signalling, downstream effectors (dehydrins, ROS scavengers, cryoprotectants and proteins involved in transfer of lipids) and candidate genes responsible for cold stress tolerance. Several factors responsible for cold stress tolerance have been addressed including cold stress-responsive regulatory/promoter elements, and different transcription factors and downstream signalling pathways have been covered. The process of cold stress sensing, signalling and TFs involved in cellular response requires further understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal M, Hao Y, Kapoor A et al (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281:37636–37645

    Article  CAS  PubMed  Google Scholar 

  • Artus NN, Uemura M, Steponkus PL et al (1996) Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both choroplast and protoplast freezing tolerance. Proc Natl Acad Sci U S A 93:13404–13409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrero-Gil J, Salinas J (2013) Post-translational regulation of cold acclimation response. Plant Sci 205–206:48–54

    Article  PubMed  Google Scholar 

  • Beike AK, Lang D, Zimmer AD, Wüst F, Trautmann D, Wiedemann G, Beyer P, Decker EL, Reski R (2015) Insights from the cold transcriptome of : global specialization pattern of conserved transcriptional regulators and identification of orphan genes involved in cold acclimation. New Phytol 205(2):869–881

    Google Scholar 

  • Bolt S, Zuther E, Zintl S et al (2016) ERF105 is a transcription factor gene of Arabidopsis thaliana required for freezing tolerance and cold acclimation. Plant Cell Environ 40:108–120

    Article  PubMed  Google Scholar 

  • Cao S, Ye M, Jiang S (2005) Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis. Plant Cell Rep 24:683–690

    Article  CAS  PubMed  Google Scholar 

  • Catala R, Lopez-Cobollo R, Castellano M et al (2014) The Arabidopsis 14-3-3 protein RARE COLD INDUCIBLE 1A links low-temperature response and ethylene biosynthesis to regulate freezing tolerance and cold acclimation. Plant Cell 26:3326–3342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan Z, Wang Y, Cao M et al (2015) RDM4 modulates cold stress resistance in Arabidopsis partially through the CBF-mediated pathway. New Phytol 209:1527–1539

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen M, Thelen JJ (2013) ACYL-LIPID DESATURASE2 is required for chilling and freezing tolerance in Arabidopsis. Plant Cell 25:1430–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheong YH, Kim KN, Pandey GK et al (2003) CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell 15:1833–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Stevenson B, Lee B-H et al (2002) Screening for gene regulation mutants by bioluminescence imaging. Sci STKE 140:PL10

    Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S et al (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2006) Gene regulation during cold acclimation in plants. Physiol Plant 126:52–61

    Article  CAS  Google Scholar 

  • Chinnusamy V, Zhu JK, Sunkar R (2010) Gene regulation during cold stress acclimation in plants. Methods Mol Biol 639:39–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai X, Xu Y, Ma Q et al (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought and salt stress in transgenic Arabidopsis. Plant Physiol 143:1739–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeFalco TA, Chiasson D, Munro K, Kaiser BN, Snedden WA (2010) Characterization of GmCaMK1, a member of a soybean calmodulin-binding receptor-like kinase family. FEBS Lett 584(23):4717–4724

    Google Scholar 

  • Dhonukshe P, Laxalt AM, Goedhart J et al (2003) Phospholipase D activation correlates with microtubule reorganization in living plant cells. Plant Cell 15:2666–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Die JV, Rowland LJ (2014) Elucidating cold acclimation pathway in blueberry by transcriptome profiling. Environ Exp Bot 106:87–98

    Google Scholar 

  • Ding Y, Li H, Zhang X et al (2015) OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev Cell 32:278–289

    Article  CAS  PubMed  Google Scholar 

  • Doherty CJ, Van Buskirk HA, Myers SJ et al (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21:972–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong CH, Pei H (2014) Over-expression of miR397 improves plant tolerance to cold stress in Arabidopsis thaliana. Plant Biol 57:209–217

    Article  CAS  Google Scholar 

  • Dong CH, Agarwal M, Zhang Y et al (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci U S A 103:8281–8286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ensminger I, Busch F, Huner NPA (2006) Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiol Plant 126:28–44

    Article  CAS  Google Scholar 

  • Finka A, Cuendet AF, Maathuis FJ et al (2012) Plasma membrane cyclic nucleotide gated calcium channels control and plant thermal sensing and acquired thermotolerance. Plant Cell 24:3333–3348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicated that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fursova OV, Pogorelko GV, Tarasov VA (2009) Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. Gene 429:98–103

    Article  CAS  PubMed  Google Scholar 

  • Gibson S, Arondel V, Iba K et al (1994) Cloning of a temperature-regulated gene encoding a chloroplast Omega-3 desaturase from Arabidopsis thaliana. Plant Physiol 106:1615–1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16(4):433–442

    Google Scholar 

  • Hayashi H, Sakamoto A, Nonaka H et al (1998) Enhanced germination under high-salt conditions of seeds of transgenic Arabidopsis with a bacterial gene (codA) for choline oxidase. J Plant Res 111:357–362

    Article  CAS  Google Scholar 

  • Henriksson NK, Trewavas AJ (2003) The effect of short-term low-temperature treatments on gene expression in Arabidopsis correlates with changes in intracellular Ca2+ levels. Plant Cell Environ 26:485–496

    Google Scholar 

  • Henriksson NK, Trewavas AJ (2003) The effect of short-term low-temperature treatments on gene expression in Arabidopsis correlates with changes in intracellular Ca2+ levels. Plant, Cell & Environ 26: 485–496

    Google Scholar 

  • Hsieh TH, Lee JT, Yang PT et al (2002) Heterology expression of the Arabidopsis C repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Jiang L, Wang F et al (2013) Jasmonate regulates the inducer of CBF expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis. Plant Cell 25:2907–2924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang G-T, Ma S-L, Bai L-P, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo Z-F (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39(2):969–987

    Google Scholar 

  • Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, Deits T, Thomashow MF (2001) Components of the Arabidopsis CRepeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 127(3):910–917

    Google Scholar 

  • Janska A, Marsik P, Zelenkova S et al (2009) Cold stress and acclimation – what is important for metabolic adjustment? Plant Biol 12:395–405

    Article  Google Scholar 

  • Jia Y, Ding Y, Shi Y et al (2016) The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis. New Phytol 212:345–353

    Article  CAS  PubMed  Google Scholar 

  • Kakimoto T (2003) Perception and signal transduction of cytokinins. Annu Rev Plant Biol 54:605–627

    Article  CAS  PubMed  Google Scholar 

  • Kanwar P, Sanyal S, Tokas I et al (2014) Comprehensive structural, interaction and expression analysis of CBL and CIPK complement during abiotic stresses and development in rice. Cell Calcium 56:81–95

    Article  CAS  PubMed  Google Scholar 

  • Kim MH, Sasaki K, Imai R (2009) Cold shock domain protein 3 regulates freezing tolerance in Arabidopsis thaliana. J Biol Chem 284:23454–23460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YS, Lee M, Lee JH et al (2015) The unified ICE-CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis. Plant Mol Biol 89:187–201

    Article  CAS  PubMed  Google Scholar 

  • Knight H, Knight MR (2000) Imaging spatial and cellular characteristics of low temperature calcium signature after cold acclimation in Arabidopsis. J Exp Bot 51:1679–1686

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Seo P (2015) The MYB96-HHP module integrates cold and abscisic acid signaling to activate the CBF-COR pathway in Arabidopsis. Plant J 82:962–977

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Xiong L, Gong Z et al (2001) The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes Dev 15:912–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BH, Lee H, Xiong L et al (2002) A mitochondrial complex I defect impairs cold-regulated nuclear gene expression. Plant Cell 14:1235–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BH, Henderson DA, Zhu JK (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17:3155–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Z, Xi D, Li S, Zheng G, Zhao S, Shi J, Wu C, Guo X (2011) A cotton group C MAP kinase gene, GhMPK2, positively regulates salt and drought tolerance in tobacco. Plant Mol Biol 77(1–2):17–31

    Google Scholar 

  • Li H, Ye K, Shi Y et al (2017) BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in Arabidopsis. Mol Plant:S1674–S2052

    Google Scholar 

  • Liu Q, Ksauga M, Sakuma Y et al (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Jia Y, Ding Y et al (2017) Plasma membrane CRPK1-mediated phosphorylation of 14-3-3 proteins induces their nuclear import to fine-tune CBF signaling during cold response. Mol Cell 66:117–128

    Article  CAS  PubMed  Google Scholar 

  • Los DA, Murata N (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta 1666:142–157

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Dai X, Xu Y et al (2015) COLD1 confers chilling tolerance in rice. Cell 160:1209–1221

    Article  CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • McAinsh MR, Pittman JK (2009) Shaping the calcium signature. New Phytol 181:275–294

    Article  CAS  PubMed  Google Scholar 

  • Miquel M, James D Jr, Dooner H et al (1993) Arabidopsis requires polyunsaturated lipids for low-temperature survival. Proc Natl Acad Sci U S A 90:6208–6212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura K, Jin JB, Lee J et al (2007) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19:1403–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura K, Ohta M, Nakazawa M et al (2011) ICE1 Ser403 is necessary for protein stabilization and regulation of cold signaling and tolerance. Plant J 67:269–279

    Article  CAS  PubMed  Google Scholar 

  • Novillo F, Alonso JM, Ecker JR et al (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci U S A 101:3985–3990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh SJ, Song SI, Kim YS et al (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osbornea T, Roseb G, Wheeler T (2013) Variation in the global-scale impacts of climate change on crop productivity due to climate model uncertainty and adaptation. Agric For Meteorol 170:183–194

    Article  Google Scholar 

  • Orvar BL, Sangwan V, Omann F, Dhindsa RS (2000) Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J 23(6):785–794

    Google Scholar 

  • Park S, Lee C, Doherty C et al (2015) Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. Plant J 82:193–207

    Article  CAS  PubMed  Google Scholar 

  • Pellegrineschi A, Reynolds M, Pacheco M et al (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47:493–500

    Article  CAS  PubMed  Google Scholar 

  • Ramankutty N, Foley JA, Norman J et al (2002) The global distribution of cultivable lands: current patterns and sensitivity to possible climate change. Glob Ecol Biogeogr 11:377–392

    Article  Google Scholar 

  • Ruell E, Cantrel C, Gawer M et al (2002) Activation of phospholipases-C and -D is an early response to a cold exposure in Arabidopsis suspension cells. Plant Physiol 130:999–1007

    Article  Google Scholar 

  • Sangwan V, Orvar BL, Beyerly J, Hirt H, Dhindsa RS (2002) Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant J 31(5):629–638

    Google Scholar 

  • Sasaki K, Kim M-H, Imai R (2007) Arabidopsis COLD SHOCK DOMAIN PROTEIN2 is a RNA chaperone that is regulated by cold and developmental signals. Biochem Biophys Res Commun 364(3):633–638

    Google Scholar 

  • Sharma P, Sharma N, Deswal R (2005) The molecular biology of the low-temperature response in plants. BioEssays 27:1048–1059

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Chan ZL (2014) AtHAP5A modulates freezing stress resistance in Arabidopsis independent of the CBF pathway. Plant Signal Behav 9:e29109

    Article  PubMed Central  Google Scholar 

  • Shi H, Ye T, Zhong B et al (2014) AtHAP5A modulates freezing stress resistance in Arabidopsis through binding to CCAAT motif of AtXTH21. New Phytol 203:554–567

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Ding Y, Yang S (2015) Cold signal transduction and its interplay with phytohormones during cold acclimation. Plant Cell Physiol 56:7–15

    Article  CAS  PubMed  Google Scholar 

  • Sinha S, Raxwal VK, Joshi B, Jagannath A, Katiyar-Agarwal S, Goel S, Kumar A, Agarwal M (2015) De novo transcriptome profiling of cold-stressed siliques during pod filling stages in Indian mustard (Brassica juncea L.) Front Plant Sci 6:932

    Google Scholar 

  • Solanke AK, Sharma AK (2008) Signal transduction during cold stress in plants. Physiol Mol Biol Plants 14:69–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steponkus PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Annu Rev Plant Physiol 35:543–584

    Article  CAS  Google Scholar 

  • Steponkus PL, Uemura M, Webb MS (1993) A contrast of the cryostability of the plasma membrane of winter rye and spring oat-two species that widely differ in their freezing tolerance and plasma membrane lipid composition. In: Steponkus PL (ed) Advances in low-temperature biology. JAI Press, London, pp 211–312

    Google Scholar 

  • Tahtiharju S, Palva T (2001) Antisense inhibition of protein phosphatase 2C accelerates cold acclimation in Arabidopsis thaliana. Plant J 26:461–470

    Article  CAS  PubMed  Google Scholar 

  • Tamminen I, Makela P, Heino P et al (2001) Ectopic expression of ABI3 gene enhances freezing tolerance in response to abscisic acid and low temperature in Arabidopsis thaliana. Plant J 25:1–8

    Article  CAS  PubMed  Google Scholar 

  • Townley HE, Knight MR (2002) Calmodulin as a potential negative regulator of Arabidopsis COR gene expression. Plant Physiol 128:1169–1172

    Article  CAS  PubMed  Google Scholar 

  • Urao T, Miyata S, Yamaguchi-Shinozaki K et al (2000) Possible his to asp phosphorelay signalling in an Arabidopsis two-component system. FEBS Lett 478:227–232

    Article  CAS  PubMed  Google Scholar 

  • Vannini C, Locatelli F, Bracale M et al (2004) Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J 37:115–127

    Article  CAS  PubMed  Google Scholar 

  • Vogel JT, Zarka DG, Van Buskirk HA et al (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211

    Article  CAS  PubMed  Google Scholar 

  • Wang X-C, Zhao Q-Y, Ma C-L, Zhang Z-H, Cao H-L, Kong Y-M, Yue C, Hao X-Y, Liang C, Ma J-Q, Jin J-Q, Li X, Yang Y-J (2013) Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genomics 14(1):415

    Google Scholar 

  • Wulfetange K, Lomin SN, Romanov GA et al (2011) The cytokinin receptors of Arabidopsis are located mainly to the endoplasmic reticulum. Plant Physiol 156:1808–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin Z, Mandaokar A, Chen J et al (2007) Arabidopsis ESK1 encodes a novel regulator of freezing tolerance. Plant J 49:786–799

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57(1):781–803

    Google Scholar 

  • Zhai H, Bai X, Zhu Y et al (2010) A single-repeat R3-MYB transcription factor MYBC1 negatively regulates freezing tolerance in Arabidopsis. Biochem Biophys Res Commun 394:1018–1023

    Article  CAS  PubMed  Google Scholar 

  • Zhan X, Zhu JK, Lang Z (2015) Increasing freezing tolerance: kinase regulation of ICE1. Dev Cell 32:257–258

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Zhang Z, Xie S et al (2016) Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis. Plant Physiol 171:2744–2759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Shi H, Lee BH et al (2004) An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc Natl Acad Sci U S A 101:9873–9878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Verslues PE, Zheng X et al (2005) HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proc Natl Acad Sci U S A 102:9966–9971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu B, Xiong AS, Peng RH et al (2010) Over-expression of ThpI from Choristoneura fumiferana enhances tolerance to cold in Arabidopsis. Mol Biol Rep 37:961–966

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Feng Y, Liang G et al (2013) Aequorin based luminescence imaging reveals stimulus and tissue specific Ca2+ dynamics in Arabidopsis plants. Mol Plant 6:444–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuther E, Juszczak I, Lee YP et al (2015) Time-dependent deacclimation after cold acclimation in Arabidopsis thaliana accessions. Sci Rep 5:12199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Deveshwar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Udawat, P., Deveshwar, P. (2018). Signalling During Cold Stress and Its Interplay with Transcriptional Regulation. In: Zargar, S., Zargar, M. (eds) Abiotic Stress-Mediated Sensing and Signaling in Plants: An Omics Perspective. Springer, Singapore. https://doi.org/10.1007/978-981-10-7479-0_11

Download citation

Publish with us

Policies and ethics