Skip to main content

Quantum Storage of High-D OAM Entanglement in an Atomic Ensemble

  • Chapter
  • First Online:
Broad Bandwidth and High Dimensional Quantum Memory Based on Atomic Ensembles

Part of the book series: Springer Theses ((Springer Theses))

  • 533 Accesses

Abstract

In this Chapter, I focus on the key goal as described in the beginning, that is the realization of high-dimensional entanglement storage and establishment high-dimensional entanglement between two atomic states. Quantum states entangled in high-dimensional OAM space show more advantages that entangled in two-dimensional space, like photonic polarization DOF. They enable quantum communication with enhanced channel capacity, quantum-information processing in more efficient way, and be more feasible to close the detection loophole in the fundamental quantum physics of Bell test experiments, etc. Preparing high-dimensional OAM entangled state and establishing distant memories in high-dimensional OAM entanglement are significant for long-distance communication in high-space, but its experimental demonstration was lacking before this work has been implemented. Herein, we have experimentally established high-dimensional entanglement in OAM space between two atomic ensembles separated 1 m apart through the technique of Raman storing photonic OAM high-dimensional entangled state. We reconstructed the density matrix for a three-dimensional entanglement, and obtained an entanglement fidelity of \(83.9\pm 2.9\)%. More importantly, we confirmed the successful preparation of a state entangled in more than three-dimensional space (up to seven-dimensional) using general and conditional entanglement witnesses. Achieving high-dimensional entanglement may represent a significant step towards a high-capacity quantum information processing, quantum communications in high-dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agnew, M., J. Leach, and R.W. Boyd. 2012. Observation of entanglement witnesses for orbital angular momentum states. The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics 66 (6): 1–4.

    Google Scholar 

  2. Agnew, Megan, Jeff Z. Salvail, Jonathan Leach, and Robert W. Boyd. 2013. Generation of orbital angular momentum bell states and their verification via accessible nonlinear witnesses. Physical Review Letters 111 (3): 030402.

    Article  ADS  Google Scholar 

  3. Charles H Bennett, Herbert J Bernstein, Sandu Popescu, and Benjamin Schumacher. 1996. Concentrating partial entanglement by local operations. Physical Review A 53(4):2046.

    Google Scholar 

  4. Bozinovic, Nenad, Yang Yue, Yongxiong Ren, Moshe Tur, Poul Kristensen, Hao Huang, Alan E. Willner, and Siddharth Ramachandran. 2013. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340 (6140): 1545–1548.

    Google Scholar 

  5. Briegel, H.-J., Wolfgang Dür, Juan I. Cirac, and Peter Zoller. 1998. Quantum repeaters: the role of imperfect local operations in quantum communication. Physical Review Letters 81 (26): 5932.

    Article  ADS  Google Scholar 

  6. Bruß, Dagmar. 2002. Characterizing entanglement. Journal of Mathematical Physics 43 (9): 4237–4251.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Choi, K.S., H. Deng, J. Laurat, and H.J. Kimble. 2008. Mapping photonic entanglement into and out of a quantum memory. Nature 452 (7183): 67–71.

    Article  ADS  Google Scholar 

  8. Clausen, C., I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin. 2011. Quantum storage of photonic entanglement in a crystal. Nature 469 (7331): 508–511.

    Article  ADS  Google Scholar 

  9. Collins, Daniel, Nicolas Gisin, Noah Linden, Serge Massar, and Sandu Popescu. 2002. Bell inequalities for arbitrarily high-dimensional systems. Physical Review Letters 88 (4): 040404.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Adetunmise, C, Dada, Jonathan Leach, Gerald S Buller, Miles J Padgett, and Erika Andersson. 2011. Experimental high-dimensional two-photon entanglement and violations of generalized bell inequalities. Nature Physics 7 (9): 677–680.

    Google Scholar 

  11. Dai, Han-Ning, Han Zhang, Sheng-Jun Yang, Tian-Ming Zhao, Jun Rui, You-Jin Deng, Li Li, Nai-Le Liu, Shuai Chen, Xiao-Hui Bao, et al. 2012. Holographic storage of biphoton entanglement. Physical Review Letters 108 (21): 210501.

    Article  ADS  Google Scholar 

  12. Ding, Dong-Sheng, Wu Jing-Hui, Zhi-Yuan Zhou, Yang Liu, Bao-Sen Shi, Xu-Bo Zou, and Guang-Can Guo. 2013. Multimode image memory based on a cold atomic ensemble. Physical Review A 87 (1): 013835.

    Article  ADS  Google Scholar 

  13. Ding, Dong-Sheng, Wu Jing-Hui, Zhi-Yuan Zhou, Bao-Sen Shi, Xu-Bo Zou, and Guang-Can Guo. 2013. Multiple image storage and frequency conversion in a cold atomic ensemble. Physical Review A 87 (5): 053830.

    Article  ADS  Google Scholar 

  14. Ding, Dong-Sheng, Wei Zhang, Zhi-Yuan Zhou, Shuai Shi, Jian-song Pan, Guo-Yong Xiang, Xi-Shi Wang, Yun-Kun Jiang, Bao-Sen Shi, and Guang-Can Guo. 2014. Toward high-dimensional-state quantum memory in a cold atomic ensemble. Physical Review A 90 (4): 042301.

    Article  ADS  Google Scholar 

  15. Ding, Dong-Sheng, Wei Zhang, Zhi-Yuan Zhou, Shuai Shi, Guo-Yong Xiang, Xi-Shi Wang, Yun-Kun Jiang, Bao-Sen Shi, and Guang-Can Guo. 2015. Quantum storage of orbital angular momentum entanglement in an atomic ensemble. Physical Review Letters 114 (5): 050502.

    Article  ADS  Google Scholar 

  16. Dong-Sheng Ding, Zhi-Yuan Zhou, Bao-Sen Shi, and Guang-Can Guo. 2013. Single-photon-level quantum image memory based on cold atomic ensembles. Nature Communications, 4.

    Google Scholar 

  17. Matthew, P Edgar, Daniel S Tasca, Frauke Izdebski, Ryan E Warburton, Jonathan Leach, Megan Agnew, Gerald S Buller, Robert W Boyd, and Miles J Padgett. 2012. Imaging high-dimensional spatial entanglement with a camera. Nature Communications 3: 984.

    Google Scholar 

  18. Robert Fickler, Mario Krenn, Radek Lapkiewicz, Sven Ramelow, and Anton Zeilinger. 2013. Real-time imaging of quantum entanglement. Scientific Reports, 3.

    Google Scholar 

  19. Franke-Arnold, Sonja, Les Allen, and Miles Padgett. 2008. Advances in optical angular momentum. Laser & Photonics Reviews 2 (4): 299–313.

    Article  Google Scholar 

  20. Franke-Arnold, Sonja, and Jonathan Leach, Miles J Padgett, Vassilis E Lembessis, Demos Ellinas, Amanda J Wright, John M Girkin, Patrik Öhberg, and Aidan S Arnold. 2007. Optical ferris wheel for ultracold atoms. Optics Express 15 (14): 8619–8625.

    Google Scholar 

  21. Glorieux, Quentin, Jeremy B Clark, Alberto M Marino, Zhifan Zhou, and Paul D Lett. 2012. Temporally multiplexed storage of images in a gradient echo memory. Optics Express 20 (11): 12350–12358.

    Google Scholar 

  22. Anna Grodecka-Grad, Emil Zeuthen, and Anders S Sørensen. 2012. High-capacity spatial multimode quantum memories based on atomic ensembles. Physical Review Letters 109(13):133601.

    Google Scholar 

  23. Gühne, O., P. Hyllus, D. Bruß, A. Ekert, M. Lewenstein, C. Macchiavello, and A. Sanpera. 2002. Detection of entanglement with few local measurements. Physical Review A 66 (6): 062305.

    Article  ADS  MATH  Google Scholar 

  24. Gühne, Otfried, and Géza Tóth. 2009. Entanglement detection. Physics Reports 474 (1): 1–75.

    Article  ADS  MathSciNet  Google Scholar 

  25. Heinze, G., A. Rudolf, F. Beil, and T. Halfmann. 2010. Storage of images in atomic coherences in a rare-earth-ion-doped solid. Physical Review A 81 (1): 011401.

    Article  ADS  Google Scholar 

  26. Beatrix, C. 2013. Hiesmayr and Wolfgang Löffler. Complementarity reveals bound entanglement of two twisted photons. New Journal of Physics 15 (8): 083036.

    Article  Google Scholar 

  27. Daniel B Higginbottom, Ben M Sparkes, Milos Rancic, Olivier Pinel, Mahdi Hosseini, Ping Koy Lam, and Ben C Buchler. 2012. Spatial-mode storage in a gradient-echo memory. Physical Review A 86(2):023801.

    Google Scholar 

  28. Inoue, R., T. Yonehara, Y. Miyamoto, M. Koashi, and M. Kozuma. 2009. Measuring qutrit-qutrit entanglement of orbital angular momentum states of an atomic ensemble and a photon. Physical Review Letters 103 (11): 110503.

    Article  ADS  Google Scholar 

  29. Kimble, H.J. 2008. The quantum internet. Nature 453: 19.

    Article  Google Scholar 

  30. Krenn, Mario, Johannes Handsteiner, Matthias Fink, Robert Fickler, and Anton Zeilinger. 2015. Twisted photon entanglement through turbulent air across vienna. Proceedings of the National Academy of Sciences 112 (46): 14197–14201.

    Article  ADS  Google Scholar 

  31. Krenn, Mario, Marcus Huber, Robert Fickler, Radek Lapkiewicz, Sven Ramelow, and Anton Zeilinger. 2014. Generation and confirmation of a (\(100 \times 100\))-dimensional entangled quantum system. Proceedings of the National Academy of Sciences 111 (17): 6243–6247.

    Google Scholar 

  32. Mair, A., A. Vaziri, G. Weihs, and A. Zeilinger. 2001. Entanglement of the orbital angular momentum states of photons. Nature 412 (6844): 313.

    Article  ADS  Google Scholar 

  33. Moretti, D., D. Felinto, and J.W.R. Tabosa. 2009. Collapses and revivals of stored orbital angular momentum of light in a cold-atom ensemble. Physical Review A 79 (2): 023825.

    Article  ADS  Google Scholar 

  34. Nicolas, A., L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat. 2014. A quantum memory for orbital angular momentum photonic qubits. Nature Photonics 8 (3): 234–238.

    Article  ADS  Google Scholar 

  35. Reim, K.F., P. Michelberger, K.C. Lee, J. Nunn, N.K. Langford, and I.A. Walmsley. 2011. Single-photon-level quantum memory at room temperature. Physical Review Letters 107 (5): 053603.

    Article  ADS  Google Scholar 

  36. Reim, K.F., J. Nunn, V.O. Lorenz, B.J. Sussman, K.C. Lee, N.K. Langford, D. Jaksch, and I.A. Walmsley. 2010. Towards high-speed optical quantum memories. Nature Photonics 4 (4): 218–221.

    Article  ADS  Google Scholar 

  37. Romero, Jacquiline, Jonathan Leach, Barry Jack, Stephen M Barnett, Miles J Padgett and Sonja Franke-Arnold. 2010. Violation of leggett inequalities in orbital angular momentum subspaces. New Journal of Physics 12 (12): 123007.

    Google Scholar 

  38. Saglamyurek, Erhan, Neil Sinclair, Eongwan Jin, Joshua A Slater, Daniel Oblak, Félix Bussières, Mathew George, Raimund Ricken, Wolfgang Sohler, and Wolfgang Tittel. 2011. Broadband waveguide quantum memory for entangled photons. Nature 469 (7331): 512–515.

    Google Scholar 

  39. Sanpera, Anna, Dagmar Bruß, and Maciej Lewenstein. 2001. Schmidt-number witnesses and bound entanglement. Physical Review A 63 (5): 050301.

    Article  ADS  Google Scholar 

  40. Shuker, M., O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson. 2008. Storing images in warm atomic vapor. Physical Review Letters 100 (22): 223601.

    Article  ADS  Google Scholar 

  41. Christoph Spengler, Marcus Huber, Stephen Brierley, Theodor Adaktylos, and Beatrix C Hiesmayr. 2012. Entanglement detection via mutually unbiased bases. Physical Review A 86(2):022311.

    Google Scholar 

  42. Thew, R.T, Kae Nemoto, Andrew G White, and William J Munro. 2002. Qudit quantum-state tomography. Physical Review A 66 (1): 012303.

    Google Scholar 

  43. Veissier, Lucile, Adrien Nicolas, Lambert Giner, and Dominik Maxein, AS Sheremet, Elisabeth Giacobino, and Julien Laurat. 2013. Reversible optical memory for twisted photons. Optics Letters 38 (5): 712–714.

    Google Scholar 

  44. Praveen K, Vudyasetu, Ryan M Camacho, and John C Howell. 2008. Storage and retrieval of multimode transverse images in hot atomic rubidium vapor. Physical Review Letters 100 (12): 123903.

    Google Scholar 

  45. Wang, Jian, Jeng-Yuan Yang, Irfan M. Fazal, Nisar Ahmed, Yan Yan, Hao Huang, Yongxiong Ren, Yang Yue, Samuel Dolinar, Moshe Tur, et al. 2012. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics 6 (7): 488–496.

    Article  ADS  Google Scholar 

  46. Jinghui, Wu, Yang Liu, Dong-Sheng Ding, Zhi-Yuan Zhou, Bao-Sen Shi, and Guang-Can Guo. 2013. Light storage based on four-wave mixing and electromagnetically induced transparency in cold atoms. Physical Review A 87 (1): 013845.

    Article  ADS  Google Scholar 

  47. Liu Yang, Wu, Shi Bao-Sen Jing-Hui, and Guo Guang-Can. 2012. Realization of a two-dimensional magneto-optical trap with a high optical depth. Chinese Physics Letters 29 (2): 024205.

    Article  ADS  Google Scholar 

  48. Alison M Yao and Miles J Padgett. 2011. Orbital angular momentum: origins, behavior and applications. Advances in Optics and Photonics 3(2):161–204.

    Google Scholar 

  49. Zhang, Han, Xian-Min Jin, Jian Yang, Han-Ning Dai, Sheng-Jun Yang, Tian-Ming Zhao, Yu. Jun Rui, Xiao Jiang He, Fan Yang, et al. 2011. Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion. Nature Photonics 5 (10): 628–632.

    Article  ADS  Google Scholar 

  50. Zhou, Zong-Quan, Yi-Lin Hua, Xiao Liu, Geng Chen, Xu Jin-Shi, Yong-Jian Han, Chuan-Feng Li, and Guang-Can Guo. 2015. Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal. Physical Review Letters 115 (7): 070502.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Sheng Ding .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ding, DS. (2018). Quantum Storage of High-D OAM Entanglement in an Atomic Ensemble. In: Broad Bandwidth and High Dimensional Quantum Memory Based on Atomic Ensembles. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-7476-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7476-9_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7475-2

  • Online ISBN: 978-981-10-7476-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics