Skip to main content

Storing High-Dimensional Quantum States in a Cold Atomic Ensemble

  • Chapter
  • First Online:
Broad Bandwidth and High Dimensional Quantum Memory Based on Atomic Ensembles

Part of the book series: Springer Theses ((Springer Theses))

  • 521 Accesses

Abstract

The reversible transfer of a high-dimensional quantum state between a true single photon, an information carrier, and a matter used as a quantum memory with high fidelity and reliability could enhance the channel capacity significantly in addition to overcoming distance limitations of quantum communication schemes through transmission losses. In the Chap. 2, we have introduced how we demonstrated single photon storage encoded with two-dimensional OAM degree of freedom. Due to the infinity Hilbert space spanned by OAM degree of freedom, photon encoded in OAM space can extend to high-dimensional state. Quantum memories have been realized with different physical systems, such as atomic ensembles and solid systems etc., many of them only realize the storage and retrieval of the single photons spanned in a two-dimensional space for example, orthogonal polarizations, therefore only a quantum bit could be stored there. In this Chapter, I will introduce an experimental realization of a quantum memory storing a heralded photon lived in a three-dimensional space spanned by OAM via EIT in a cold atomic ensemble. We reconstruct the storage process density matrix with fidelity of \(85.3\% \) by the aid of a 4-F imaging system experimentally. The ability to store a high-dimensional quantum state with high fidelity is very promising for building a high-dimensional quantum network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu Bliokh, K., F.J. Rodríguez-Fortuño, Franco Nori, and Anatoly V. Zayats. 2015. Spin-orbit interactions of light. Nature Photonics 9 (12): 796–808.

    Article  ADS  Google Scholar 

  2. Briegel, H.-J., Wolfgang Dür, Juan I. Cirac, and Peter Zoller. 1998. Quantum repeaters: the role of imperfect local operations in quantum communication. Physical Review Letters 81 (26): 5932.

    Article  ADS  Google Scholar 

  3. Chen, Lixiang, and Weilong She. 2009. Increasing shannon dimensionality by hyperentanglement of spin and fractional orbital angular momentum. Optics letters 34 (12): 1855–1857.

    Article  ADS  Google Scholar 

  4. Cho, Young-Wook, and Yoon-Ho Kim. 2010. Atomic vapor quantum memory for a photonic polarization qubit. Optics express 18 (25): 25786–25793.

    Article  ADS  Google Scholar 

  5. Choi, K.S., H. Deng, J. Laurat, and H.J. Kimble. 2008. Mapping photonic entanglement into and out of a quantum memory. Nature 452 (7183): 67–71.

    Article  ADS  Google Scholar 

  6. Chuang, Isaac L. 1997. Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44 (11–12): 2455–2467.

    Article  ADS  Google Scholar 

  7. Clausen, Christoph, Félix Bussieres, Mikael Afzelius, and Nicolas Gisin. 2012. Quantum storage of heralded polarization qubits in birefringent and anisotropically absorbing materials. Physical review letters 108 (19): 190503.

    Article  ADS  Google Scholar 

  8. Dada, Adetunmise C., Jonathan Leach, Gerald S. Buller, Miles J. Padgett, and Erika Andersson. 2011. Experimental high-dimensional two-photon entanglement and violations of generalized bell inequalities. Nature Physics 7 (9): 677–680.

    Article  ADS  Google Scholar 

  9. De Riedmatten, Hugues, Mikael Afzelius, Matthias U. Staudt, Christoph Simon, and Nicolas Gisin. 2008. A solid-state light-matter interface at the single-photon level. Nature 456 (7223): 773–777.

    Article  ADS  Google Scholar 

  10. De Riedmatten, Hugues, Ivan Marcikic, Hugo Zbinden, and Nicolas Gisin. 2002. Creating high dimensional entanglement using mode-locked lasers. Quantum Information and Computation 2 (6): 425–433.

    MATH  Google Scholar 

  11. Ding, Dong-Sheng, Wu Jing-Hui, Zhi-Yuan Zhou, Yang Liu, Bao-Sen Shi, Xu-Bo Zou, and Guang-Can Guo. 2013. Multimode image memory based on a cold atomic ensemble. Physical Review A 87 (1): 013835.

    Article  ADS  Google Scholar 

  12. Ding, Dong-Sheng, Wu Jing-Hui, Zhi-Yuan Zhou, Bao-Sen Shi, Xu-Bo Zou, and Guang-Can Guo. 2013. Multiple image storage and frequency conversion in a cold atomic ensemble. Physical Review A 87 (5): 053830.

    Article  ADS  Google Scholar 

  13. Dong-Sheng, Ding, Zhi-Yuan Zhou, Bao-Sen Shi, and Guang-Can Guo. 2013. Single-photon-level quantum image memory based on cold atomic ensembles. Nature communications, 4.

    Google Scholar 

  14. England, D.G., P.S. Michelberger, T.F.M. Champion, K.F. Reim, K.C. Lee, M.R. Sprague, X.M. Jin, N.K. Langford, W.S. Kolthammer, J. Nunn, et al. 2012. High-fidelity polarization storage in a gigahertz bandwidth quantum memory. Journal of Physics B: Atomic, Molecular and Optical Physics 45 (12): 124008.

    Article  ADS  Google Scholar 

  15. Fickler, Robert, Radek Lapkiewicz, William N. Plick, Mario Krenn, Christoph Schaeff, Sven Ramelow, and Anton Zeilinger. 2012. Quantum entanglement of high angular momenta. Science 338 (6107): 640–643.

    Article  ADS  Google Scholar 

  16. Grodecka-Grad, Anna, Emil Zeuthen, and Anders S Sørensen. 2012. High-capacity spatial multimode quantum memories based on atomic ensembles. Physical review letters, 109(13):133601.

    Google Scholar 

  17. Gündoğan, Mustafa, Patrick M. Ledingham, Attaallah Almasi, and Matteo Cristiani. 2012. Quantum storage of a photonic polarization qubit in a solid. Physical review letters 108 (19): 190504.

    Article  Google Scholar 

  18. Heinze, Georg, Christian Hubrich, and Thomas Halfmann. 2013. Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute. Physical review letters 111 (3): 033601.

    Article  ADS  Google Scholar 

  19. Higginbottom, Daniel B, Ben M Sparkes, Milos Rancic, Olivier Pinel, Mahdi Hosseini, Ping Koy Lam, and Ben C Buchler. 2012. Spatial-mode storage in a gradient-echo memory. Physical Review A, 86(2):023801.

    Google Scholar 

  20. Kimble, H.J. 2008. The quantum internet. Nature 453: 19.

    Article  Google Scholar 

  21. Leach, Jonathan, Barry Jack, Jacqui Romero, Anand K. Jha, Alison M. Yao, Sonja Franke-Arnold, David G. Ireland, Robert W. Boyd, Stephen M Barnett, and Miles J Padgett. 2010. Quantum correlations in optical angle-orbital angular momentum variables. Science 329 (5992): 662–665.

    Article  ADS  Google Scholar 

  22. Lvovsky, Alexander I., Barry C. Sanders, and Wolfgang Tittel. 2009. Optical quantum memory. Nature photonics 3 (12): 706–714.

    Article  ADS  Google Scholar 

  23. Mair, A., A. Vaziri, G. Weihs, and A. Zeilinger. 2001. Entanglement of the orbital angular momentum states of photons. Nature 412 (6844): 313.

    Article  ADS  Google Scholar 

  24. Marrucci, Lorenzo, Ebrahim Karimi, Sergei Slussarenko, Bruno Piccirillo, Enrico Santamato, Eleonora Nagali, and Fabio Sciarrino. 2011. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. Journal of Optics 13 (6): 064001.

    Article  ADS  Google Scholar 

  25. Nicolas, A., L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat. 2014. A quantum memory for orbital angular momentum photonic qubits. Nature Photonics 8 (3): 234–238.

    Article  ADS  Google Scholar 

  26. Reim, K.F., P. Michelberger, K.C. Lee, J. Nunn, N.K. Langford, and I.A. Walmsley. 2011. Single-photon-level quantum memory at room temperature. Physical Review Letters 107 (5): 053603.

    Article  ADS  Google Scholar 

  27. Shuker, M., O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson. 2008. Storing images in warm atomic vapor. Physical review letters 100 (22): 223601.

    Article  ADS  Google Scholar 

  28. Thew, R.T., Kae Nemoto, Andrew G. White, and William J Munro. 2002. Qudit quantum-state tomography. Physical Review A 66 (1): 012303.

    Article  ADS  MathSciNet  Google Scholar 

  29. Vudyasetu, Praveen K., Ryan M. Camacho, and John C. Howell. 2008. Storage and retrieval of multimode transverse images in hot atomic rubidium vapor. Physical review letters 100 (12): 123903.

    Article  ADS  Google Scholar 

  30. Jinghui, Wu, Yang Liu, Dong-Sheng Ding, Zhi-Yuan Zhou, Bao-Sen Shi, and Guang-Can Guo. 2013. Light storage based on four-wave mixing and electromagnetically induced transparency in cold atoms. Physical Review A 87 (1): 013845.

    Article  ADS  Google Scholar 

  31. Zhang, Han, Xian-Min Jin, Jian Yang, Han-Ning Dai, Sheng-Jun Yang, Tian-Ming Zhao, Yu. Jun Rui, Xiao Jiang He, Fan Yang, et al. 2011. Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion. Nature Photonics 5 (10): 628–632.

    Article  ADS  Google Scholar 

  32. Zhou, Zong-Quan, Wei-Bin Lin, Ming Yang, Chuan-Feng Li, and Guang-Can Guo. 2012. Realization of reliable solid-state quantum memory for photonic polarization qubit. Physical review letters 108 (19): 190505.

    Article  ADS  Google Scholar 

  33. Goyal, Sandeep K., Filippus S. Roux, Andrew Forbes, and Thomas Konrad. 2013. Implementing QuantumWalks Using Orbital Angular Momentum of Classical Light. Physical review letters 110: 263602.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Sheng Ding .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ding, DS. (2018). Storing High-Dimensional Quantum States in a Cold Atomic Ensemble. In: Broad Bandwidth and High Dimensional Quantum Memory Based on Atomic Ensembles. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-7476-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7476-9_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7475-2

  • Online ISBN: 978-981-10-7476-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics