Skip to main content

Quantum Memory of Photonic Image and Its’ Superposition

  • Chapter
  • First Online:
Book cover Broad Bandwidth and High Dimensional Quantum Memory Based on Atomic Ensembles

Part of the book series: Springer Theses ((Springer Theses))

  • 540 Accesses

Abstract

As a critical component device in quantum communications, quantum memory would enable the distribution of quantum information in long-distance node [6]. Single photons are the most perfect candidate of quantum information carriers, thus playing an essential role in quantum information science. Encoding photons with spatial shape through high-dimensional states significantly increases the information carrying capability and network efficiency, because high-dimensional state can implement many protocols, such as high-dimensional quantum communication, that two-dimension cannot [19]. In this chapter, I describe how we demonstrate storing photons carrying images in spatial and frequency multiplexing, and explore the effects in these memory configurations. Then, I introduced the first experimental realization of a true single photon carrying OAM stored via EIT in a cold atomic ensemble. The experiment shows that the non-classical correlated properties between trigger photon and retrieved photon are still retained. The structured profile between input and retrieved photons are strongly similar, giving a high memory fidelity. Most important, the single-photon’s spatial coherence during storage exhibits in good-preservation. The resulting data shows that the cold atoms quantum memory has a ability to store spatial structure at the single-photon-level, which opens the possibility for high-dimensional quantum memories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas, M.M., T. Kostiuk, and K.W. Ogilvie. 1976. Infrared upconversion for astronomical applications. Applied Optics 15 (4): 961–970.

    Article  ADS  Google Scholar 

  2. Afzelius, Mikael, Christoph Simon, Hugues De Riedmatten, and Nicolas Gisin. 2009. Multimode quantum memory based on atomic frequency combs. Physical Review A 79 (5): 052329.

    Article  ADS  Google Scholar 

  3. Balić, Vlatko, Danielle A Braje, Pavel Kolchin, GY Yin, and Stephen E Harris. 2005. Generation of paired photons with controllable waveforms. Physical Review Letters 94 (18): 183601.

    Google Scholar 

  4. Bechmann-Pasquinucci, H., and Wolfgang Tittel. 2000. Quantum cryptography using larger alphabets. Physical Review A 61 (6): 062308.

    Article  ADS  MathSciNet  Google Scholar 

  5. Boyd, R.W., and C.H. Townes. 1977. An infrared upconverter for astronomical imaging. Applied Physics Letters 31 (7): 440–442.

    Article  ADS  Google Scholar 

  6. Camacho, Ryan M., Praveen K. Vudyasetu, and John C. Howell. 2009. Four-wave-mixing stopped light in hot atomic rubidium vapour. Nature Photonics 3 (2): 103–106.

    Google Scholar 

  7. Chanelière, T., D.N. Matsukevich, S.D. Jenkins, S.Y. Lan, T.A. Kennedy, and A. Kuzmich. 2005. Storage and retrieval of single photons transmitted between remote quantum memories. Nature 438 (7069): 833.

    Article  ADS  Google Scholar 

  8. Chen, Qun-Feng, Bao-Sen Shi, Yong-Sheng Zhang, and Guang-Can Guo. 2008. Entanglement of the orbital angular momentum states of the photon pairs generated in a hot atomic ensemble. Physical Review A 78 (5): 053810.

    Article  ADS  Google Scholar 

  9. Chen, Yi-Hsin, Meng-Jung Lee, I-Chung Wang, Shengwang Du, Yong-Fan Chen, Ying-Cheng Chen, and A. Yu Ite. 2013. Coherent optical memory with high storage efficiency and large fractional delay. Physical Review Letters 110 (8): 083601.

    Google Scholar 

  10. Chuang, Isaac L., and Michael A. Nielsen. 1997. Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics 44 (11–12): 2455–2467.

    Google Scholar 

  11. Ding, Dong-Sheng, Wu Jing-Hui, Zhi-Yuan Zhou, Yang Liu, Bao-Sen Shi, Xu-Bo Zou, and Guang-Can Guo. 2013. Multimode image memory based on a cold atomic ensemble. Physical Review A 87 (1): 013835.

    Article  ADS  Google Scholar 

  12. Ding, Dong-Sheng, Wu Jing-Hui, Zhi-Yuan Zhou, Bao-Sen Shi, Xu-Bo Zou, and Guang-Can Guo. 2013. Multiple image storage and frequency conversion in a cold atomic ensemble. Physical Review A 87 (5): 053830.

    Article  ADS  Google Scholar 

  13. Ding, Dong-Sheng, Zhi-Yuan Zhou, Bao-Sen Shi, Xu-Bo Zou, and Guang-Can Guo. 2012. Image transfer through two sequential four-wave-mixing processes in hot atomic vapor. Physical Review A 85 (5): 053815.

    Article  ADS  Google Scholar 

  14. Djordjevic, Ivan B. 2011. Deep-space and near-earth optical communications by coded orbital angular momentum (oam) modulation. Optics Express 19 (15): 14277–14289.

    Article  ADS  Google Scholar 

  15. Filip, Radim, and Ladislav Mišta Jr. 2011. Detecting quantum states with a positive wigner function beyond mixtures of gaussian states. Physical Review Letters 106 (20): 200401.

    Google Scholar 

  16. Gibson, Graham, Johannes Courtial, Miles J. Padgett, Mikhail Vasnetsov, Valeriy Pasï¿1/2ï¿1/2ko, Stephen M. Barnett, and Sonja Franke-Arnold. 2004. Free-space information transfer using light beams carrying orbital angular momentum. Optics Express 12 (22): 5448–5456.

    Google Scholar 

  17. Glorieux, Quentin, Jeremy B Clark, Alberto M. Marino, Zhifan Zhou, and Paul D. Lett. 2012. Temporally multiplexed storage of images in a gradient echo memory. Optics Express 20 (11): 12350–12358.

    Google Scholar 

  18. Gorshkov, Alexey, V., Axel André, Michael Fleischhauer, Anders S Sørensen, and Mikhail D. Lukin. 2007. Universal approach to optimal photon storage in atomic media. Physical Review Letters 98 (12): 123601.

    Google Scholar 

  19. Grangier, Philippe, Gerard Roger, and Alain Aspect. 1986. Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences. EPL (Europhysics Letters) 1 (4): 173.

    Article  ADS  Google Scholar 

  20. Grodecka-Grad, Anna, Emil Zeuthen, and Anders S. Sørensen. 2012. High-capacity spatial multimode quantum memories based on atomic ensembles. Physical Review Letters, 109(13): 133601.

    Google Scholar 

  21. He, Xiaodong, Xu Peng, Jin Wang, and Mingsheng Zhan. 2009. Rotating single atoms in a ring lattice generated by a spatial light modulator. Optics Express 17 (23): 21007–21014.

    Article  ADS  Google Scholar 

  22. He, Xiaodong, Xu Peng, Jin Wang, and Mingsheng Zhan. 2010. High efficient loading of two atoms into a microscopic optical trap by dynamically reshaping the trap with a spatial light modulator. Optics Express 18 (13): 13586–13592.

    Article  ADS  Google Scholar 

  23. Heinze, G., A. Rudolf, F. Beil, and T. Halfmann. 2010. Storage of images in atomic coherences in a rare-earth-ion-doped solid. Physical Review A 81 (1): 011401.

    Article  ADS  Google Scholar 

  24. Higginbottom, Daniel B., Ben M. Sparkes, Milos Rancic, Olivier Pinel, Mahdi Hosseini, Ping Koy Lam, and Ben C Buchler. 2012. Spatial-mode storage in a gradient-echo memory. Physical Review A 86(2): 023801.

    Google Scholar 

  25. Hosseini, Mahdi. Ben M. Sparkes, Geoff Campbell, Ping K. Lam, and Ben C. Buchler. 2011. High efficiency coherent optical memory with warm rubidium vapour. Nature. Communications 2: 174.

    Google Scholar 

  26. Inoue, R., N. Kanai, T. Yonehara, Y. Miyamoto, M. Koashi, and M. Kozuma. 2006. Entanglement of orbital angular momentum states between an ensemble of cold atoms and a photon. Physical Review A 74 (5): 053809.

    Article  ADS  Google Scholar 

  27. Kimble, H.J. 2008. The quantum internet. Nature 453: 19.

    Article  Google Scholar 

  28. Kuzmich, A., W.P. Bowen, A.D. Boozer, A. Boca, C.W. Chou, L.-M. Duan, and H.J. Kimble. 2003. Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles. arXiv preprint quant-ph/0305162.

    Google Scholar 

  29. Leach, Jonathan, Barry Jack, Jacqui Romero, Anand K. Jha, Alison M. Yao, Sonja Franke-Arnold, David G. Ireland, Robert W. Boyd, Stephen M. Barnett, and Miles J. Padgett. 2010. Quantum correlations in optical angle- orbital angular momentum variables. Science 329 (5992): 662–665.

    Google Scholar 

  30. Li, Shujing, Xu Zhongxiao, Haiyan Zheng, Xingbo Zhao, Wu Yuelong, Hai Wang, Changde Xie, and Kunchi Peng. 2011. Coherent manipulation of spin-wave vector for polarization of photons in an atomic ensemble. Physical Review A 84 (4): 043430.

    Article  ADS  Google Scholar 

  31. Löffler, W., T.G. Euser, E.R. Eliel, M. Scharrer, P. St, J. Russell, and J.P. Woerdman. 2011. Fiber transport of spatially entangled photons. Physical Review Letters 106 (24): 240505.

    Article  Google Scholar 

  32. Lukin, M.D., P.R. Hemmer, and Marlan O. Scully. 2000. Resonant nonlinear optics in phase-coherent media. Advances in Atomic, Molecular, and Optical Physics 42: 347– 386.

    Google Scholar 

  33. Mair, A., A. Vaziri, G. Weihs, and A. Zeilinger. 2001. Entanglement of the orbital angular momentum states of photons. Nature 412 (6844): 313.

    Article  ADS  Google Scholar 

  34. Nauerth, Sebastian, Florian Moll, Markus Rau, Christian Fuchs, Joachim Horwath, Stefan Frick, and Harald Weinfurter. 2013. Air-to-ground quantum communication. Nature Photonics 7 (5): 382–386.

    Article  ADS  Google Scholar 

  35. Phillips, Nathaniel B., Alexey V. Gorshkov, and Irina Novikova. 2008. Optimal light storage in atomic vapor. Physical Review A 78(2): 023801.

    Google Scholar 

  36. Pugatch, Rami, Moshe Shuker, Ofer Firstenberg, Amiram Ron, and Nir Davidson. 2007. Topological stability of stored optical vortices. Physical Review Letters 98 (20): 203601.

    Article  ADS  Google Scholar 

  37. Sangouard, Nicolas, Christoph Simon, Bo Zhao, Yu-Ao Chen, Hugues De Riedmatten, Jian-Wei Pan, and Nicolas Gisin. 2008. Robust and efficient quantum repeaters with atomic ensembles and linear optics. Physical Review A 77 (6): 062301.

    Article  ADS  Google Scholar 

  38. Shuker, M., O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson. 2008. Storing images in warm atomic vapor. Physical Review Letters 100 (22): 223601.

    Article  ADS  Google Scholar 

  39. Simon, Christoph, Hugues De Riedmatten, Mikael Afzelius, Nicolas Sangouard, Hugo Zbinden, and Nicolas Gisin. 2007. Quantum repeaters with photon pair sources and multimode memories. Physical Review Letters 98 (19): 190503.

    Article  ADS  Google Scholar 

  40. Veissier, Lucile, Adrien Nicolas, Lambert Giner, Dominik Maxein, A.S. Sheremet, Elisabeth Giacobino, and Julien Laurat. 2013. Reversible optical memory for twisted photons. Optics Letters 38 (5): 712–714.

    Google Scholar 

  41. Vudyasetu, Praveen, K., Ryan M. Camacho, and John C. Howell. 2008. Storage and retrieval of multimode transverse images in hot atomic rubidium vapor. Physical Review Letters 100 (12): 123903.

    Google Scholar 

  42. Wang, Hai, Shujing Li, Xu Zhongxiao, Xingbo Zhao, Lijun Zhang, Jiahua Li, Wu Yuelong, Changde Xie, Kunchi Peng, and Min Xiao. 2011. Quantum interference of stored dual-channel spin-wave excitations in a single tripod system. Physical Review A 83 (4): 043815.

    Article  ADS  Google Scholar 

  43. Wu, Jinghui, Yang Liu, Dong-Sheng Ding, Zhi-Yuan Zhou, Bao-Sen Shi, and Guang-Can Guo. 2013. Light storage based on four-wave mixing and electromagnetically induced transparency in cold atoms. Physical Review A 87 (1): 013845.

    Article  ADS  Google Scholar 

  44. Wu, Liu Yang, Shi Bao-Sen Jing-Hui, and Guo Guang-Can. 2012. Realization of a two-dimensional magneto-optical trap with a high optical depth. Chinese Physics Letters 29 (2): 024205.

    Article  ADS  Google Scholar 

  45. Yin, Juan, Yuan Cao, Yu-Huai Li, Sheng-Kai Liao, Liang Zhang, Ji-Gang Ren, Wen-Qi Cai, Wei-Yue Liu, Bo Li, Hui Dai, et al. 2017. Satellite-based entanglement distribution over 1200 kilometers. Science 356 (6343): 1140–1144.

    Article  Google Scholar 

  46. Zhou, Shuyu, Shanchao Zhang, Chang Liu. J.F. Chen, Jianming Wen, M.M.T. Loy, George Ke Lun Wong, and Shengwang Du. 2012. Optimal storage and retrieval of single-photon waveforms. Optics Express 20 (22): 24124–24131.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Sheng Ding .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ding, DS. (2018). Quantum Memory of Photonic Image and Its’ Superposition. In: Broad Bandwidth and High Dimensional Quantum Memory Based on Atomic Ensembles. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-7476-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7476-9_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7475-2

  • Online ISBN: 978-981-10-7476-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics